ANSWER KEY **FULL TEST-06**

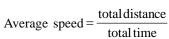
PHYSICS

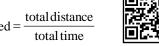
THISICS										
	Q.1 (2)	Q.2 (1)	Q.3 (3)	Q.4 (2)	Q.5 (3)	Q.6 (1)	Q.7 (1)	Q.8 (3)	Q.9 (1)	Q.10 (3)
	Q.11 (4)	Q.12 (4)	Q.13 (2)	Q.14 (1)	Q.15 (1)	Q.16 (4)	Q.17 (2)	Q.18 (2)	Q.19 (3)	Q.20 (3)
	Q.21 (1)	Q.22 (2)	Q.23 (1)	Q.24 (3)	Q.25 (2)	Q.26 (4)	Q.27 (2)	Q.28 (2)	Q.29 (2)	Q.30 (2)
	Q.31 (4)	Q.32 (3)	Q.33 (2)	Q.34 (4)	Q.35 (4)	Q.36 (4)	Q.37 (2)	Q.38 (1)	Q.39 (2)	Q.40 (3)
	Q.41 (3)	Q.42 (1)	Q.43 (3)	Q.44 (4)	Q.45 (4)					
CHEMISTRY										
	Q.46 (1)	Q.47 (4)	Q.48 (4)	Q.49 (3)	Q.50 (1)	Q.51 (4)	Q.52(2)	Q.53(2)	Q.54 (4)	Q.55 (3)
	Q.56 (4)	Q.57 (3)	Q.58 (1)	Q.59 (4)	Q.60 (4)	Q.61 (1)	$\mathbf{Q.62}(1)$	Q.63 (2)	Q.64 (3)	Q.65 (3)
	Q.66 (2)	Q.67 (4)	Q.68 (3)	Q.69 (1)	Q.70 (4)	Q.71 (3)	Q.72 (4)	Q.73 (1)	Q.74 (1)	Q.75 (3)
	Q.76 (2)	Q.77 (1)	Q.78 (1)	Q.79 (1)	Q.80(2)	Q.81 (4)	Q.82 (4)	Q.83 (1)	Q.84 (3)	Q.85 (2)
	Q.86 (3)	Q.87 (4)	Q.88 (1)	Q.89 (1)	Q.90 (4)					
BIOLOGY										
	Q.91 (3)	Q.92 (3)	Q.93 (1)	Q.94 (1)	Q.95 (3)	Q.96 (3)	Q.97 (3)	Q.98 (4)	Q.99 (1)	Q.100 (4)
	Q.101 (3)	Q.102(2)	Q.103 (3)	Q.104 (1)	Q.105 (3)	Q.106(2)	Q.107(2)	Q.108(2)	Q.109 (3)	Q.110 (3)
	Q.111 (3)	Q.112 (4)	Q.113 (3)	Q.114 (3)	Q.115 (1)	Q.116 (1)	Q.117 (1)	Q.118 (2)	Q.119 (1)	Q.120 (1)
	Q.121 (1)	Q.122 (4)	Q.123 (3)	Q.124 (1)	Q.125(2)	Q.126 (1)	Q.127 (3)	Q.128 (3)	Q.129 (4)	Q.130 (3)
	Q.131 (3)	Q.132(2)	Q.133 (4)	Q.134(2)	Q.135 (4)	Q.136 (1)	Q.137 (4)	Q.138 (3)	Q.139 (4)	Q.140 (4)
	Q.141 (4)	Q.142 (3)	Q.143 (2)	Q.144 (4)	Q.145 (3)	Q.146 (3)	Q.147 (4)	Q.148(2)	Q.149 (4)	Q.140 (2)
	Q.151 (4)	Q.152(3)	Q.153 (4)	Q.154(3)	Q.155 (4)	Q.156 (3)	Q.157 (4)	Q.158 (1)	Q.159 (4)	Q.160 (3)
	Q.161 (2)	Q.162 (3)	Q.163 (2)	Q.164 (2)	Q.165 (3)	Q.166 (3)	Q.167 (4)	Q.168 (3)	Q.169 (4)	Q.170 (3)
	Q.171 (4)	Q.172 (4)	Q.173 (3)	Q.174 (1)	Q.175 (3)	Q.176 (3)	Q.177 (2)	Q.178 (3)	Q.179 (1)	Q.180 (4)

Hints & Solutions

$$\overline{\mathbf{Q.1}}$$
 (2)

$$y = \frac{z}{r}e^{-zt}$$


$$[y] = \left[\frac{z}{r}\right]$$


 $[zt] = [M^0L^0T^0] \Longrightarrow [Z] = [T^{-1}]$

$$[r] = \left[\frac{z}{y}\right] = \left[\frac{T^{-1}}{L^{1}}\right]$$

$$[r] = [L^{-1}T^{-1}]$$

Q.2

$$48 = \frac{x+x}{\frac{x}{60} + \frac{x}{x}}$$

$$\frac{x}{60} + \frac{x}{v} = \frac{2x}{48} \Rightarrow \frac{1}{v} = \frac{-1}{60} + \frac{1}{24} = \frac{-2+5}{120}$$

$$v = \frac{120}{3} = 40 \text{ km/hr}$$

Acquires same height. So, $(Vy)_1 = (Vy)_2$

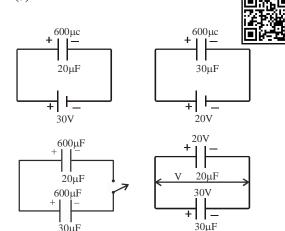
 $V \sin 45^\circ = \sqrt{2}V \sin \theta$

$$\sin \theta = \frac{1}{2} \Rightarrow \theta = 30^{\circ}$$

Q.4 (2)

Applying Newton's second law

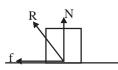
$$mg - T = ma$$


mg

$$T = m(g - a)$$

$$250 = 50(10 - a)$$

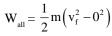
$$5 = 10 - a \Rightarrow a = 5 \text{ m/s}^2$$



From charge conservation 600 + 600 = 20V + 30 V50 V = 1200

V = 24 Volt

Q.6 (1)

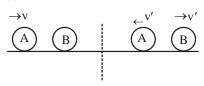


Contact force,

$$R = \sqrt{N^2 + f^2}$$
$$= \sqrt{N^2 + (\mu N)^2}$$

$$=N\sqrt{1+\mu^2}$$

 $(W_{all} = Area from x = 0 to x = 25)$


$$25 \times 10 = \frac{1}{2} \times 5 \left(v_{\mathrm{f}}^2\right)$$

$$v_f^2 = \frac{25 \times 2 \times 10}{5}$$

$$v_f^2 = 100$$

$$v_f = 10 \text{m/s}$$

Q.8 (3)

$$e = 1 = \frac{v_2 - v_1}{u_1 - u_2}$$

$$e = 1 = \frac{v_2 - v_1}{u_1 - u_2}$$
 $m_A v = -m_A v^1 + m_B v^1$

$$1 = \frac{\mathbf{v}' - \left(-\mathbf{v}'\right)}{\mathbf{v} - \mathbf{0}}$$

$$1 = \frac{\mathbf{v}' - \left(-\mathbf{v}'\right)}{\mathbf{v} - \mathbf{0}} \qquad \mathbf{m}_{\mathbf{A}} \left(\mathbf{v} + \mathbf{v}'\right) = \mathbf{m}_{\mathbf{B}} \mathbf{v}'$$

$$2\mathbf{v'} = \mathbf{v}$$

$$\frac{m_A}{m_B} = \frac{v'}{v + v'} = \frac{v'}{(2v') + v'} = \frac{1}{3}$$

Q.9

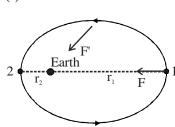
For paramagnetic substances susceptibility is small and positive.

$$\chi_{\rm m} > 0$$

$$\mu_{\rm r}\!=\!1+\,\chi_m\!>\!1$$

Loss in potential energy = gain in kinetic energy

$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$


$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}\left(\frac{MR^2}{2}\right)\frac{v^2}{R^2}$$

$$4mgh = 2mv^2 + mv^2$$

$$v = \sqrt{\frac{4mgh}{2m + M}}$$

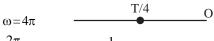
Torque of gravitational force on satellite is zero about centre of earth. Therefore Angular Momentum of satellite remains conserved about centre of Earth.

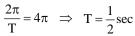
$$\therefore L_1 = L_2$$

From Energy conservation P

$$K_1 + U_1 = K_2 + U_2$$

$$K_1 - \frac{GMm}{r_1} = K_2 - \frac{GMm}{r_2}$$

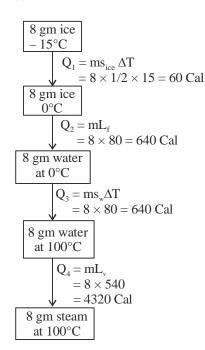

$$K_2 = K_1 + GMm \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$


$$\therefore$$
 $\mathbf{r}_2 < \mathbf{r}_1 \Rightarrow \mathbf{GMm} \left(\frac{1}{\mathbf{r}_2} - \frac{1}{\mathbf{r}_1} \right) = + \mathbf{positve}$

$$\mathbf{Q.12} \qquad \Longrightarrow \mathbf{K}_2 > \mathbf{K}_1$$

$$\mathbf{Q.12} \qquad (4)$$

 $x = 4\cos 4\pi t$



$$t = \frac{T}{4} = \frac{1}{8} \sec$$

Q.13

So heat required Q = Q1 + Q2 + Q3 + Q4

$$= (60 + 640 + 800 + 4320) \text{ cal}$$

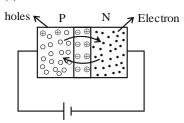
= 5820 cal Ans. (2)

Q.14

Density of a nucleus is independent of mass number

Average translational Kinetic energy ∝ T

Translational kinetic energy, $E = \frac{3}{2}kT$


$$E \propto T$$

$$\frac{E_1}{E_2} = \frac{T_1}{T_2}$$

$$\frac{6.21 \times 10^{-21}}{E_2} = \frac{300}{600}$$

$$E_2 = 12.42 \times 10^{-21} \,\mathrm{J}$$

(4)Q.16

holes are driven from P-side to N-side

... Majority charge carrier on both sides of the junction

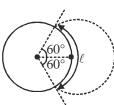
We know,

$$B = -V \frac{dp}{dV}$$

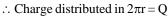
$$B = -\frac{10 \times 10^6}{-\frac{0.2}{100}} = 5 \times 10^9 \, \text{Ps}$$

$$B = 5 \text{ GPa}$$

Q.19



$$V_{\rm T} \propto \frac{(\rho_0 - \rho_\ell)}{\eta}$$


$$\frac{10}{0.0625} = \frac{\eta_g}{(8.5 \times 10^{-4})} \left(\frac{7.8 - 1}{7.8 - 1.2} \right)$$

$$\eta_g = 0.132 \text{ Pa-sec}$$

Q.23 (1)

$$\therefore \text{ Charge distributed in } 2\pi r = \frac{2\pi r}{3} = \frac{Q}{2\pi r} \times \frac{2\pi r}{3} = \frac{Q}{3}$$

$$\phi_{\rm s} = \frac{{\bf q}_{\rm in}}{{\bf \epsilon}_0}$$

$$\phi_s = \frac{q_{in}}{3\epsilon_0}$$

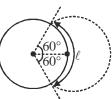
are driven towards the junction.

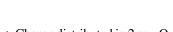
Hence width of the depletion layer decreases.

$$B = -V \frac{dp}{dV}$$

$$B = -\frac{10 \times 10^6}{-\frac{0.2}{100}} = 5 \times 10^9 \,\mathrm{Pe}$$

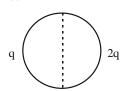
Volumetric expansion = $\beta_1 + 2\beta_2$





$$V_{_T} \propto \frac{(\rho_0 - \rho_\ell)}{\eta}$$

$$\frac{10}{0.0625} = \frac{\eta_{\rm g}}{(8.5 \!\times\! 10^{-4})} \! \left(\frac{7.8 \!-\! 1}{7.8 \!-\! 1.2} \right)$$



. Charge distributed in
$$2\pi r = \frac{1}{2\pi}$$

$$\phi_{s} = \frac{q_{in}}{\epsilon_{o}}$$

$$\phi_s = \frac{q_{in}}{3\epsilon_0}$$

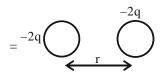
Potential at a distance on the axis of ring is given by

$$V = \frac{KQ}{\sqrt{R^2 + X^2}} :$$

Here, Q is a total charge on the ring. It is independent of distribution of charge.

$$v = \frac{K(q+2q)}{\sqrt{R^2 + \left(2\sqrt{2}R\right)^2}} = \frac{Kq}{R}$$

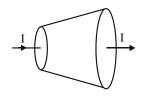
Q.25


$$F = \frac{K(q)(-5q)}{r^2}$$

$$F = \frac{-5Kq^2}{r^2}$$
....(1)

After touching charge will flow till potential of both becine some As both are icentical then charge will

equally distribunte . $\frac{q-5q}{2}$

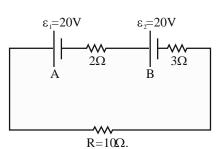

$$F^{1} = \frac{K(-2q)(-2q)}{r^{2}} = \frac{4Kq^{2}}{r^{2}}$$
(2)

Dividing eq(2) and (1)

$$\frac{F^1}{F} = \frac{4}{5}$$

$$F^1 = \frac{4F}{5}$$

Q.26 (4)



Current flow is constant.

 \therefore i = neAV_d = constant

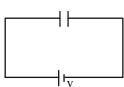
$$V_{\rm d} \propto \frac{1}{A}$$

Q.27

Current flow in the circuit

$$i = \frac{\epsilon_1 + \epsilon_2}{R_{eq}}$$

$$i = \frac{20+20}{2+3+10} = \frac{40}{15} = \frac{8}{3}A$$


Potential difference across cell B

$$\Delta V = \varepsilon_{B} - ir_{B}$$
$$= 20 - \left(\frac{8}{3}\right)(3)$$

$$=12V$$

Ans. (2) Q.28

(2)

Potential difference across the plates is v which is

$$\therefore \text{ Electric field }, E = \frac{v}{d} \Longrightarrow E \propto \frac{1}{d}$$

As d↑ $E \downarrow$

Q.29

$$R = \frac{V^2}{P} \Rightarrow R_1 = \frac{200 \times 200}{100} = 400\Omega$$

and
$$R_2 = \frac{100 \times 100}{200} = 50\Omega$$

Maximum current rating $i = \frac{P}{V}$

So,
$$i_1 = \frac{100}{200}$$
 and $i_2 = \frac{200}{100} \Rightarrow \frac{i_1}{i_2} = \frac{1}{4}$

Q.30 (2)

$$B = \mu_0 \mu_r ni$$

 $= (4\pi \times 10^{-7})(400) \times 2000 \times 4 \cong 4T$

Q.31 (4)

$$q = 10^{-16} C$$

 $B = B_0 \hat{i} + 4B_0 \hat{j}$
 $V = 2\hat{i} + 4\hat{j}$

$$F = q(\overrightarrow{V} \times \overrightarrow{B})$$

$$3 \times 10^{-16} \, k = 10^{-16} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 0 \\ B_0 & 4B_0 & 0 \end{vmatrix}$$

$$3\hat{\mathbf{k}} = (8\mathbf{B}_0 - 4\mathbf{B}_0)\hat{\mathbf{k}}$$
$$4\mathbf{B}_0 = 3$$

$$B_0 = \frac{3}{4} = 0.75 T$$
 Ans. (4)

Q.32 Induced emf in primary coil

$$e_{p} = \left(\frac{d\phi}{dt}\right) = \frac{d(\phi_{0} + 4t)}{dt}$$

$$e_{p} = 4V$$

$$N_{p} = 4$$

$$\Phi = \frac{4}{100} = -1$$

 $\phi = \frac{4}{N_P} = \frac{4}{500}$ Output voltage, $e_s = N_s f$

$$=1500 \times \frac{4}{500} = 12V$$

Q.33 (2)

$$\Delta \phi = \phi_f - \phi_i$$

$$= BA \cos 0^\circ - BA \cos 180^\circ$$

$$= 2BA$$

$$e = \frac{\Delta \phi}{\Delta t} = \frac{2BA}{\Delta t} = \frac{2 \times 2 \times 10 \times 10^{-4}}{0.01} = 0.4V$$

Q.34 (4)
$$V_R = 40V, V_C = 60V, V_L = 30V$$

$$V_{L}$$

$$V_{R} \equiv V_{C}$$

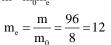
$$V_{R}$$

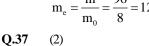
$$V = \sqrt{V_R^2 + (V_C - V_L)^2}$$
$$= \sqrt{40^2 + (60 - 30)^2} = 50$$

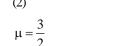
power factor
$$\cos \phi = \frac{V_R}{V} = \frac{40}{50} = \frac{4}{5} = 0.8$$

Q.35

$$\cos \phi = \frac{R}{Z}$$



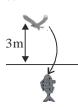

 $\cos \phi = 1$ (Given)


So,
$$Z = R$$

$$m_0 = 8$$
, $m = 96$

$$m = m_0 m_e$$

$$\frac{1}{f} = (\mu_1 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
 (f = 20 cm)

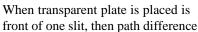

$$\frac{1}{20} = \frac{1}{f} = \left(\frac{3}{2} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{2} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots (i)$$

$$\frac{1}{f'} = \left(\frac{3/2}{5/2} - 1\right) \left(\frac{1}{10}\right) = \left(\frac{6}{10} - 1\right) \left(\frac{1}{10}\right) = \frac{2}{50}$$
(ii)

$$\frac{f'}{f} = \frac{\frac{1}{2}}{\frac{2}{5}} = -\frac{5}{4}$$

$$f' = -\frac{5}{4} \times 20 = -25$$
 cm.

Q.38 (1)



$$d_{app} = \frac{d_{actual}}{n_i} \times n_r$$

$$=\frac{3}{1}\times\frac{4}{3}=4$$

Q.39

$$\Delta X = (\mu - 1)t = d\sin\theta \left(\therefore \sin\theta \approx \tan\theta = \frac{y}{D} \right)$$

$$(\mu-1)t = \frac{dy}{D}$$

$$y = \frac{(\mu - 1)tD}{d}$$

$$\frac{6}{1000} = \frac{\left(\mu - 1\right) \times 10^{-3} \times 20 \times 10^{-2}}{3 \times 10^{-3}}$$

$$\mu - 1 = \frac{9}{100}$$
 $\mu = 1.09$

Stopping potential and maximum kinetic energy is independent of intensity. It depends on frequency of incident radiation. Photo electric current depends on intensity

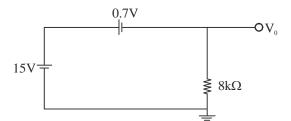
Ans (2)

Paschen series for shortest wavelength of paschen $n = \infty$ to n = 3 transition occurs

$$\therefore \frac{1}{\lambda} = Rz^2 \left[\frac{1}{3^2} - \frac{1}{\infty^2} \right]$$

$$\frac{1}{\lambda} = Rz^2 \left[\frac{1}{9} \right] \qquad \dots (1)$$

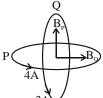
$$\Rightarrow Rz^2 = \frac{9}{\lambda}$$

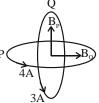

For longest wavelength of lymen series; n = 2 to n = 1

$$\frac{1}{\lambda'} = Rz^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4}Rz^2$$
 ... (2)

$$\Rightarrow \lambda' = \frac{4\lambda}{27}$$

Q.42


Si diode is in forward biased condition while Ge diode is in reverse biased condition.



$$V_0 = 15-0.7$$

= 14.3 V

$$i = \frac{14.3}{8 \times 10^3} = 1.8 \text{mA}$$

Q.43 (3)

$$B_{_{P}} = \frac{\mu_0 I_2}{2R}$$

$$=\frac{4\pi\times10^{-7}\times4}{2\times0.02\pi}=4\times10^{-5}\ Wb/m^2$$

$$B_{Q} = \frac{\mu_0 I_1}{2R}$$

$$= \frac{4\pi \times 10^{-7} \times 3}{2 \times 0.2 \,\pi}$$
$$= 3 \times 10^{-5} \text{Wb/m}^2$$

$$\therefore B = \sqrt{B_P^2 + B_Q^2}$$

$$= \sqrt{\left(4 \times 10^{-5}\right)^2 + \left(3 \times 10^{-5}\right)^2}$$

$$= 5 \times 10^{-5} Wb/m^2$$

$$29 \, \text{MSD} = 30 \, \text{VSD}$$

$$1VSD = \frac{29}{30}MSD$$

Least count = 1 MSD - 1 VSD

$$= 1 \text{ MSD} - \frac{29}{30} \text{MSD}$$

$$=\frac{1}{30}MSD$$

Given that $1 \text{ MSD} = 1^{\circ}$

$$LC = \frac{1}{30} \times 1^{\circ} = \frac{1}{30} \times 60 \,\text{min} = 2 \,\text{min}$$

Q.45

$$\rho = \frac{\pi r^2 R}{\ell}$$

$$\frac{\Delta \rho}{\rho} = 2\frac{\Delta r}{r} + \frac{\Delta R}{R} + \frac{\Delta \ell}{\ell}$$

$$=2\left(\frac{0.02}{0.24}\right)+\frac{1}{30}+\frac{0.01}{4.8}$$

$$\frac{\Delta \rho}{\rho} = 0.20$$

$$\frac{\Delta\rho}{\rho}{\times}100 = 20\%$$

Q.46 (1)

X Y xy₃ xy, Mole 0.2 0.1 weight 18.5 gm 13.05

$$Mole = \frac{wt.}{Mwt.}$$

So

for xy₃

for xy₃

$$0.2 = \frac{18.5}{x + 3y}$$

$$0.2 = \frac{18.5}{x + 3y}$$
 & $0.1 = \frac{13.05}{x + 5y}$

0.2x + 0.64y = 18.5..(1) & 0.1x + 0.5y = 13.05....(2)After solving (1) & (2)

$$x = 35.5$$

$$y = 19$$

Q.47 **(4)**

 $\Delta E = 2E - E = \frac{hc}{\lambda} \qquad ...(1)$

$$\Delta E = \frac{4E}{3} - E = \frac{hc}{\lambda^{1}} \qquad \dots (2)$$

$$\frac{1}{2} \quad \frac{E}{E} = \frac{hc}{\lambda} \times \frac{\lambda^{1}}{hc}$$

$$3 = \frac{\lambda^1}{\lambda} \Longrightarrow \lambda^1 = 3\lambda$$

Q.48

PE = -1.7 eV

$$T.E = \frac{PE}{2} = \frac{-1.7}{2} = -0.85$$

$$\therefore E_n = \frac{-13.6}{n^2}, n^2 = \frac{13.6}{0.85}$$

i.e. the energy of n = 4

So excited state is 3rd

Q.49 (3)

K = 231 pm

Sr = 215 pm

Q.50 (1)

A hybrid orbital formed from s and p-orbital can contribute of σ -bond

only due to symmetrical head-on overlapping.

N₂ is more stable than F₂ due to stronger bond.

N, has B.O. 3

F, has B.O. 1

Bond strength ∝ Bond order

Q.52 **(2)**

It does ot make exact predictions regarding the tetra hedral and sqaure planar structures of 4- coordinate complex.

Q.53 (2)

 $\Delta H_f^0(CO_2) = \Delta H_{rx^n}^0$ when.

- Product is forming 1 mole
- Product formed by its elements
- Element present in most stable Commor occuring

So in 2nd reaction this is happen

q = 100 J, w = -30 J

$$\Delta U = q + w$$

$$AU = 100 - 30 = 70 J$$

$$v_1 = 2\ell$$
, $v_2 = 6l$
 $P_{\text{ext}} = 5 \text{ atm.}$
 $W = P_{\text{ext.}} (\text{dv})$

$$P_{\rm ext} = 5^{'} atm$$

$$\overrightarrow{W} = P_{ovt} (dv)$$

$$= -5 (v_2 - v_1)$$

$$=-5(6-2)$$

$$=$$
 -20ℓ atm.

(i)
$$NH_4OH + HCl \rightarrow NH_4OH + H_2O$$

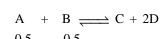
4 5 - - -
0 5-4 4

Not buffer

(ii) HCN + NaOH
$$\rightarrow$$
 NaCN + H_2O
1 2 - -

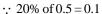
Basic solution

(iii) $HCl + NaOH \rightarrow SA + SB$


No buffer

(iv)
$$NH_4OH + HCl \rightarrow NH_4Cl + H_2O$$

 4 1 $-$


Basic buffer

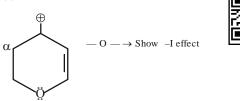
Option (4)

 $t = eq^m \quad 0.5 - 0.1 \quad 0.5 - 0.1 \quad 0.1$

$$\text{keq}^{\text{m}} = \frac{(0.1)(0.2)^2}{(0.4)^2} = 0.025$$

$$K_2 \overset{+6}{C} r_2 O_7 + S n^{+2} \rightarrow S n^{+4} + C r^{+3}$$

equivalent of $K_2Cr_2O_7 = \text{equivalent of } Sn^{+2}$ $mole \times 6 = 1 \times 2$


mole =
$$\frac{2}{6} = \frac{1}{3}$$

Q.59 **(4)** $-NO_{\alpha}$

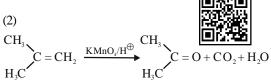
$$\begin{array}{ccc} -\text{NO}_2 & \rightarrow -\text{M/-I} & -\text{COOH} \rightarrow -\text{M/-I} \\ -\text{CN} & \rightarrow -\text{M/-I} & -\text{CH}_3 \rightarrow +\text{H/+I} \end{array}$$

Q.60

Cojugated system is present $\begin{cases} \pi \sigma \oplus \\ \text{and } \pi \sigma .. \end{cases}$

So Resonance C^{\oplus} has $2 \alpha - H$ so show hyperconjugation

1 -bromo-5-chloro-4-methyl hexan-3-ol


Q.62 (1)

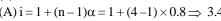
 $CH_3 CH_2 CH = CH_2 \xrightarrow{H-Br} CH_3 - CH_2 - CH_2$ (FRAR) 1-bromo butane

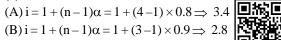
According to Anti M.K. - Rule

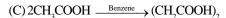
Q.63 (2)

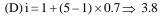
molecular mass of $CO_2 = 44$

Q.64 (3)

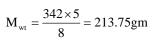

 $\begin{array}{c|c} CH - CH & Zn/\Delta \\ CH - CH & -ZnBr_2 \end{array} CH \equiv CH \quad \begin{array}{c} Red \ Hot \\ \hline Fe-tube \end{array}$




dehalogenation


cyclic polymerisation

Q.65



Q.66

$$\Pi_1 = \Pi_2 \Rightarrow C_1 RT = C_2 RT$$

$$\frac{8}{1000} \times \frac{1000}{1000} = \frac{5}{1000} \times \frac{1000}{1000}$$

$$\frac{8}{342} \times \frac{1000}{100} = \frac{5}{M_{wt}} \times \frac{1000}{100}$$

Q.67

(i)
$$K = Sm^{-1}$$

 $\lambda_{eq.} = Sm^2 eq^{-1}$
 $\lambda_{M} = Sm^2 mol^{-1}$
 $G^* = m^{-1}$

Q.68

A:
$$H_2 \to 2H^+ + 2e^-$$

C: $2H^+ + 2e^- \to H_2$

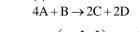
 $H_2 + 2H^+ \rightarrow 2H^+ + H_2$ 4atm (0.1M) (0.1M)1atm

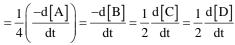
$$E = E^{\circ} - \frac{0.0591}{2} log \frac{P_{H_2}}{P_{H_2}}$$

$$=0-\frac{0.0591}{2}\log\frac{1}{4}$$

$$=+\frac{0.06}{2}\times0.60=0.018\,\mathrm{v}$$

Q.69


$$\frac{-d[A]}{dt} = k[A]^{1}$$


Q.70 r = k[A][B]

$$r^1 = k \left(\frac{1}{\frac{1}{4}}\right) \left(\frac{1}{\frac{1}{4}}\right)$$

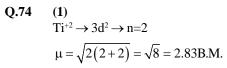
 $r^1 = k \times 16$ 16 times

Q.71

$$\frac{\text{R.O.D. of A}}{4} = \frac{\text{R.O.D. of B}}{1} = \frac{\text{R.O.A. of C}}{2} = \frac{\text{R.O.A. of D}}{2}$$

Q.72 (4) **Facts**

Q.73 CCl₄ is not readily hydrolysed due to non-availability of d-orbital in carbon.



 $Cr^{+3} \rightarrow 3d^3 \Rightarrow \mu = 3.87 \text{ B.M.}$ $Zn^{+2} \rightarrow 3d^{10} \Rightarrow \mu = 0 \text{ B.M.}$ $Co^{+2} \rightarrow 3d^7 \rightarrow \mu = 3.87 \text{ B.M.}$

Q.75 (3)they have high melting points than pure metals.

Q.76 On moving left to Right in a period ionic Radii dereases. $La^{+3} > Eu^{+3} > Ho^{+3} > Tm^{+3}$

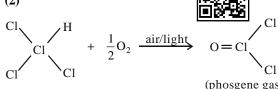
Q.77 **(1)** $K_3[Cr(C_2O_4)_3]$ Potassium trioxalatochromate(III)

Q.78 $(i)[Fe(CN)_{\epsilon}]^{3-} \rightarrow CN^{-} \rightarrow S.F.L.(d^{2}SP^{3})$ $t_{2\sigma}^{5}e_{\sigma}^{0}$,1 unpaired e

 $\mu = \sqrt{3}$ B.M. paramagnetic, low spin complex.

 $(ii)[CoF_6]^{3-} \rightarrow F^-(W.F.L.) \rightarrow Sp^3d^2$ $t_{2g}^{4}e_{g}^{2} \rightarrow 4 \text{ unpaired } e^{-}$

 $\mu = \sqrt{24}$ B.M., low spin complex, Para magnetic.


(iii) $[Co(NH_3)_6]^{3+} \rightarrow d^2sp^3$, $t_{2g}^{6}e_g^{0}$ μ = 0 , low spin complex , Diamagnetic (iv) $[Mn(H_2O)_6]^{2+} \rightarrow t_{2g}^3 e_g^2 \rightarrow sp^3 d^2$

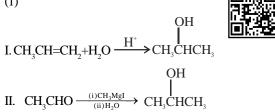
 $\mu = \sqrt{35}$ B.M. high spin complex, Paramagnetic.

Q.79 molar conductivity ∝ No of electrolytes $[Co(NH_3)_6]Cl_3 \rightarrow 1:3$ electrolytes $[Co(NH_3),Cl]Cl_2 \rightarrow 1:2$ $[Co(NH_3),Cl_3]Cl \rightarrow 1:1$ $[Co(NH_3),Cl_3] \rightarrow 0$

Q.80 **(2)**

Q.81 (4)

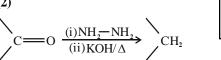
2-methyl hexan-2-ol is an 3°-Alcohol give immediate turbidity with Lucas reagent.



Q.82 (4) → 2, 1° - Alcohol and 1, 2°-Alcohol

ОН HO. Catechol {O-dihydroxy benzene

Q.83 (1)



III. $CH_2O \xrightarrow{(i)C_2H_5MgI} C_2H_5CH_2OH$

 $\xrightarrow{\text{KMnO}_4}$ CH₃CHCH₂ IV. CH₃CH=CH₅ -ОНОН

Q.84 (3) Acetaldehyde Acetone \times

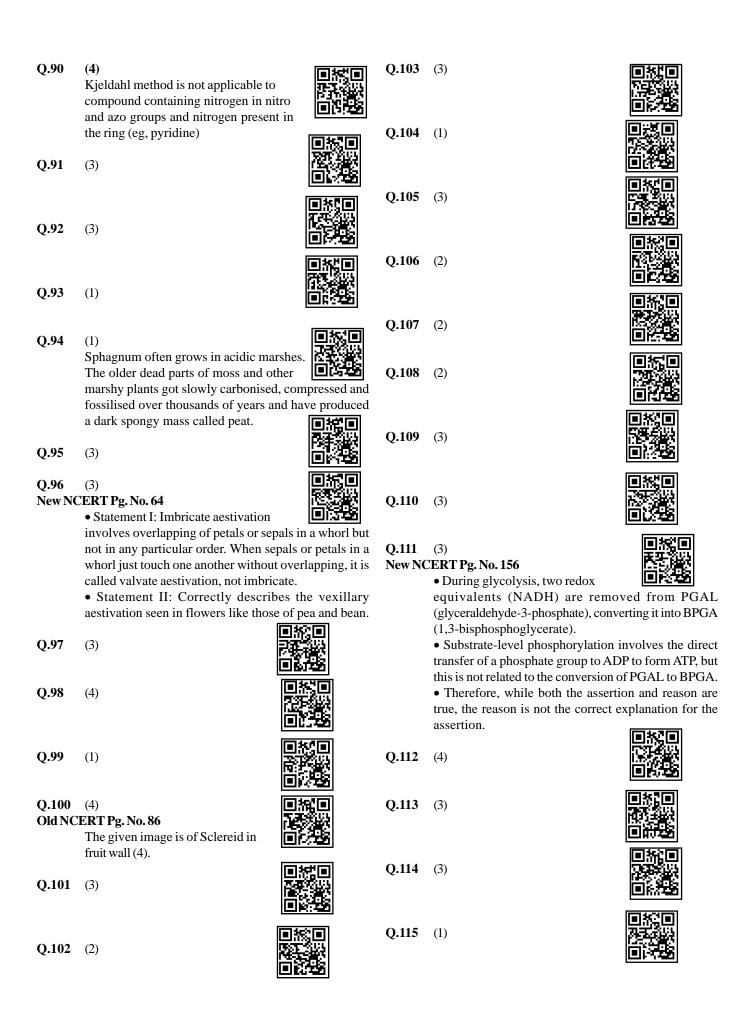
Tollen's test: Q.85 (2)

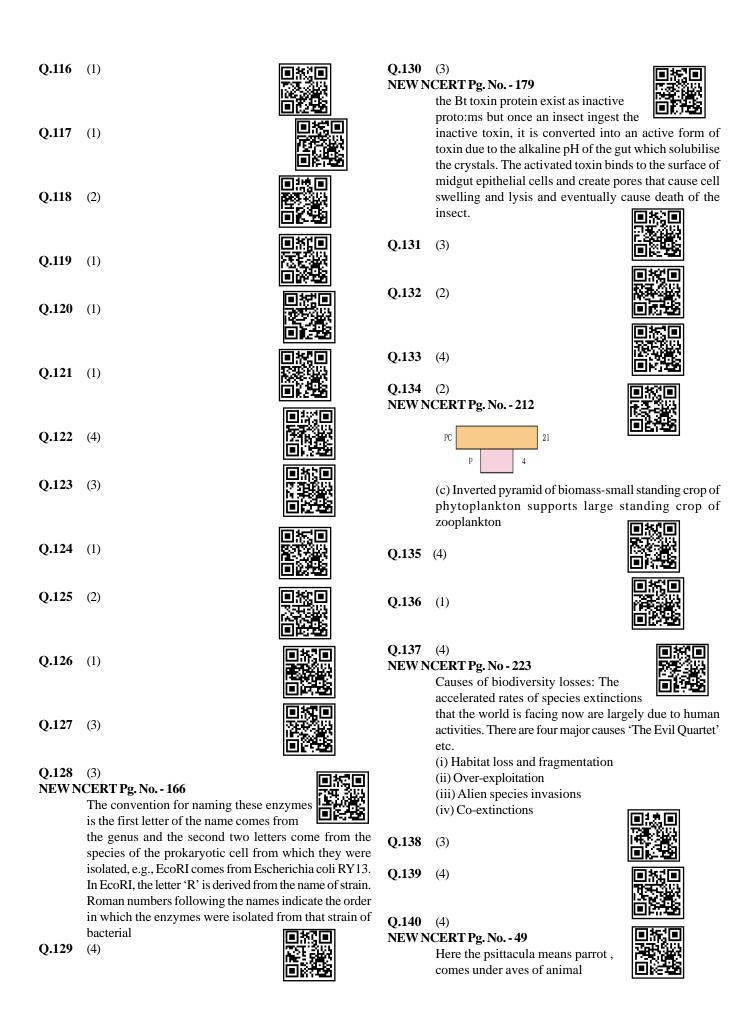
Wolf-Kishner reduction

Q.86 (3)CH, CH(OCrOHCl,), CHO Toluene Chromium

Q.87 **(4)** NH, NH, Br₂/H₂O Aniline

complex


Br 2,4,6- Tribromo aniline


Q.88 (1) For methyl amines, Basic strength order is aqueous medium is $2^{\circ} > 1^{\circ} > 3^{\circ} > NH_{2}$

Q.89 **(1)** Vitamin $B_6 \rightarrow Pyridoxine$ Vitamin $C \rightarrow Ascorbic acid$ Vitamin $B_2 \rightarrow Riboflavin$ Vitamin $B_1 \rightarrow Thiamine$

kingdom are homiothermous (warm blooded animals) i.e, they are able to maintain a constant body temperature.

O.141 (4)

NEW NCERT Pg. No. - 40

Here both the statements A AND B are correct

A- depicting the water canal system of poriferans, where water enters through ostia and exit through osculum \rightarrow this is correct

B - poriferans are dioecious sexes are separate

Q.142 (3)

Q.143 (2)

O.144 (4)

New NCERT Pg. No. 80, 81

• Statement I: Incorrect, as adult frogs have a short alimentary canal because they are carnivorous, not herbivorous.

• Statement II: Incorrect, as the dorsal side of a frog is typically olive green with dark spots.

Q.145 (3)

Q146

Q.147 (4)

Q.148 (2)

Q.149

Q.150 (2)

Q.151 **(4)**

Chloroplast duplication occurs in G, phase of the cell cycle.

Q.152 (3)

NEW NCERT Pg. No. - 185

Breathing involves two stages: inspiration during which atmospheric air is drawn in and expiration by which the alveolar air is released out.

Expiration takes place when the intra-pulmonary pressure is higher than the atmospheric pressure.

Relaxation of the diaphragm and the inter-costal muscles returns the diaphragm and sternum to their normal positions and reduce the thoracic volume and thereby the pulmonary volume. This leads to an increase in intra-pulmonary pressure to slightly above the atmospheric pressure causing the expulsion of air from the lungs, i.e., expiration

Q.153 (4)

NEW NCERT Pg. No. - 187

Residual Volume (RV): Volume of air remaining in the lungs even after a forcible expiration. This averages 1100 mL to 1200 mL. By adding up a few respiratory volumes described above, one can derive various pulmonary capacities, which can be used in clinical diagnosis.

Q.154 (3)

Q.155

NEW NCERT Pg. No -198, 199

A bicuspid or mitral valve guards the opening between the left atrium and the left ventricle. The openings of the right and the left ventricles into the pulmonary artery and the aorta respectively are provided with the semilunar valves.

The opening between the right atrium and the right ventricle is guarded by a valve formed of three muscular flaps or cusps, the tricuspid valve,

Q.156 (3)

Q.157 (4)

Q.158 (1)

Q.159 (4)

Q.160 (3)

Q.161 (2)

NEW NCERT Pg. No. -232

When a neuron is not conducting any impulse, i.e., resting, the axonal membrane is comparatively more

permeable to potassium ions (K⁺) and nearly impermeable to sodium ions (Na⁺). Similarly, the

membrane is impermeable to negatively charged proteins present in the axoplasm. Consequently, the axoplasm inside the axon contains high concentration of K⁺ and negatively charged proteins and low concentration of Na+.

Q.162 (3)

Q.163 (2)

Q.164 (2)

Q.165 (3)

Q.166 (3) NEW NCERT Pg. No - 27

The epididymis leads to vas deference that ascends to the abdomen and loops over the urinary bladder. It recieves a duct from seminal

vesicle and opens into urethra as the ejaculatory duct.

Q.167 (4) NEW NCERT Pg. No - 37

Placenta also acts as an endocrive tissue and produces several hormones like HCG (human chorionic gonadotrophin), HPL (human placental lactogen), estrogens, pregestogens etc.

Q.168 (3)

NEW NCERT Pg. No. -48

Infertility cases either due to inability of the male partner to inseminate the female

or due to very low sperm counts in the ejaculates, could be corrected by artificial insemination (AI) technique. In this technique, the semen collected either from the husband or a healthy donor is artificially introduced either into the vagina or into the uterus (IUI - intrauterine insemination) of the female.

Q.169 (4) NEW NCERT Pg. No. -47

Early symptoms of most of these are minor and include itching, fluid discharge, slight pain, swellings, etc., in the genital region. Infected females may often be asymptomatic and hence, may remain undetected for long. Absence or less significant symptoms in the early stages of infection and the social stigma attached to the STIs, deter the infected persons from going for timely detection and proper treatment.

Q.170 (3)

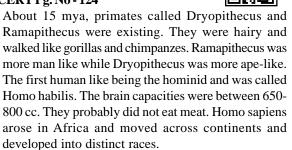
Q.171

Q.172

Q.173 (3)

NEW NCERT Pg. No. -88

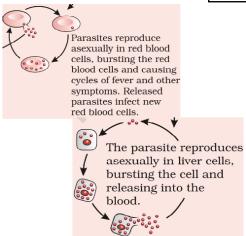
(a) RNA was the first genetic material: Correct. Evidence supports that RNA evolved before DNA.


- (c) Ribosome is the protein-synthesizing factory: Correct. Ribosomes are essential for translation.
- (d) Lac operon regulation by a common promoter and regulatory genes: Correct. This is the mechanism of polycistronic genes in prokaryotes.
- (b) is incorrect because RNA polymerase binds to the promoter (not start codon).

Q.174 (1) NEW NCERT Pg. No -117

The process of evolution of different species in a given geographical area starting from a point and literally radiating to other areas of geography (habitats) is called adaptive radiation, Darwin's finches represent one of the best examples of this phenomenon.

Q.175 (3) NEW NCERT Pg. No - 124


Q.176 (3)

Q.177 (2) NEW NCERT Pg. No -132

Q.178 (3) NEW NCERT Pg. No -137

The exaggerated response of the immune system to certain antigens present in the environment is called allergy. The substances to which such an immune response is produced are called allergenates. Common examples of allergens are mites in dust, pollens, animal dander, etc. Symptoms of allergic reactions include sneezing, watery eyes, running nose and difficulty in breathing.

For determining the cause of allergy, the patient is exposed to or injected with very small doses of possible allergens, and the reactions studied. The use of drugs like anti-histamine, adrenalin and steroids quickly reduce the symptoms of allergy.

Somehow, modern-day life style has resulted in lowering of immunity and more sensitivity to allergens.

Q.179 (1) NEW NCERT Pg. No -134

For diseases such as malaria and filariasis that are transmitted through insect vectors, the most important measure is to control or eliminate the vectors and their breeding places. The vector-borne (Aedes mosquitoes) diseases are dengue and

chikungunya.

Q.180 (4)

