ANWER KEY FULL TEST-02

DIIVCIA	C -
PHYSIC.	•

					-2-02				
Q.1 (2)	Q.2 (3)	Q.3 (3)	Q.4 (4)	Q.5 (4)	Q.6 (4)	Q.7 (1)	Q.8 (3)	Q.9 (3)	Q.10 (4)
Q.11 (4)	Q.12 (3)	Q.13 (2)	Q.14 (2)	Q.15 (2)	Q.16 (3)	Q.17 (1)	Q.18 (2)	Q.19 (1)	Q.20 (2)
Q.21 (3)	Q.22 (1)	Q.23 (1)	Q.24 (2)	Q.25 (3)	Q.26 (3)	Q.27 (3)	Q.28 (3)	Q.29 (4)	Q.30 (1)
Q.31 (2)	Q.32 (2)	Q.33 (2)	Q.34 (3)	Q.35 (3)	Q.36 (4)	Q.37 (2)	Q.38 (4)	Q.39 (3)	Q.40 (4)
Q.41 (2)	Q.42 (2)	Q.43 (1)	Q.44 (1)	Q.45 (2)					
CHEMISTRY									
Q.46 (2)	Q.47 (3)	Q.48 (1)	Q.49 (3)	Q.50 (3)	Q.51 (1)	Q.52 (3)	Q.53 (3)	Q.54(2)	Q.55 (3)
Q.56 (4)	$\mathbf{Q.57}(2)$	Q.58(2)	Q.59(4)	$\mathbf{Q.60}(2)$	Q.61 (4)	$\mathbf{Q.62}(1)$	Q.63 (3)	Q.64 (1)	$\mathbf{Q.65}(3)$
Q.66 (2)	Q.67 (4)	Q.68 (3)	Q.69 (3)	Q.70 (2)	Q.71 (1)	Q.72 (2)	Q.73 (3)	Q.74 (4)	Q.75 (4)
Q.76 (3)	Q.77 (3)	Q.78 (2)	Q.79 (1)	Q.80 (3)	Q.81 (2)	Q.82 (3)	Q.83 (4)	Q.84 (2)	Q.85 (4)
Q.86 (2)	Q.87 (1)	Q.88 (1)	Q.89 (4)	Q.90 (3)					
BIOLOGY									
Q.91 (3)	Q.92 (3)	Q.93 (1)	Q.94 (4)	Q.95 (1)	Q.96 (2)	Q.97 (1)	Q.98 (1)	Q.99 (1)	Q.100 (4)
Q.101 (3)	Q.102 (4)	Q.103 (1)	Q.104 (4)	Q.105 (1)	Q.106 (1)	Q.107 (2)	Q.108 (1)	Q.109 (2)	Q.110 (2)
Q.111 (3)	Q.112 (3)	Q.113 (3)	Q.114 (1)	Q.115 (2)	Q.116 (2)	Q.117 (3)	Q.118 (4)	Q.119 (2)	Q.120(2)
Q.121 (3)	Q.122 (1)	Q.123 (3)	Q.124 (3)	Q.125 (4)	Q.126 (3)	Q.127(2)	Q.128 (3)	Q.129 (4)	Q.130 (3)
Q.131 (2)	Q.132 (1)	Q.133 (3)	Q.134 (3)	Q.135 (1)	Q.136 (4)	Q.137 (2)	Q.138 (3)	Q.139 (4)	Q.140 (3)
Q.141 (3)	Q.142 (3)	Q.143 (1)	Q.144 (1)	Q.145 (4)	Q.146 (4)	Q.147 (3)	Q.148 (3)	Q.149 (2)	Q.150 (2)
Q.151 (1)	Q.152 (3)	Q.153 (3)	Q.154 (4)	Q.155 (4)	Q.156 (1)	Q.157 (4)	Q.158 (3)	Q.159 (4)	Q.160 (3)
Q.161 (4)	Q.162 (3)	Q.163 (3)	Q.164 (1)	Q.165 (3)	Q.166 (1)	Q.167 (3)	Q.168 (4)	Q.169 (2)	Q.170 (2)

Hints & Solutions

Q.176(3)

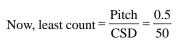
Q.175(3)

Q.1 (2)
$$[Torque] = [ML^2T^{-2}]$$

Q.172(2)

[Energy density] =
$$\left[\frac{\text{Energy}}{\text{Volume}}\right] = \left[\text{ML}^{-1}\text{T}^{-2}\right]$$

Q.173(2)

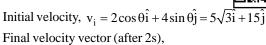

Q.174(3)

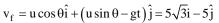
[Angular momentum] = $[ML^2T^{-1}]$ [Specific heat] = $[M^0L^2T^{-2}K^{-1}]$

Q.2

Q.171(2)

Pitch =
$$\frac{4}{8}$$
 = 0.5mm




$$= \frac{1}{100} \text{mm} = 0.01 \text{mm}$$
$$= 0.001 \text{ cm}$$

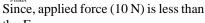
Q.3

Since the particle moves with constant speed hence the change in magnitude of velocity is zero.

Q.178(2)

Q.179(3)

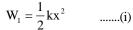
Now,
$$v_i \cdot v_f = 25 \times 3 - 15 \times 5 = 0$$


$$\therefore v_i \perp v_f$$

Q.177 (4)

Q.5

Q.6


$$F_{s \text{ max}} = \mu \times N = 0.3 \times 50 = 15 \text{ N}$$

the
$$F_{s max}$$

Therefore F_s =10 N

According to the question, In the first condition,

In the second condition,

$$W_2 = \frac{1}{2}k(x+y)^2$$
(ii)

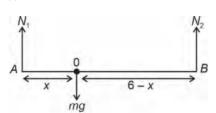
Work for x to y expansion

$$= \frac{1}{2}k(x+y)^2 - \frac{1}{2}kx^2$$

$$= \frac{1}{2} k \left[x^2 + y^2 + 2xy - x^2 \right]$$

Q.180(4)

$$=\frac{1}{2}k\Big[y^2+2xy\Big]$$


$$=\frac{1}{2}ky[y+2x]$$

From the conservation of energy, $mgh = \mu mgd$

$$mgh = \mu mgd$$

$$d = \frac{h}{\mu}$$

Q.8 (3)

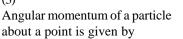
From the FBD of plank,

Taking torques about mg:

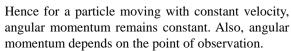
$$x(N_1) = (6 - x)N_2$$

$$x(3N) = (6 - x)N$$

$$[:: N_2 = 3N_1]$$


$$3x = 6 - x$$

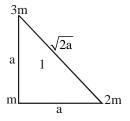
$$4x = 6$$

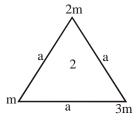

$$\therefore x = 1.5 \text{ m}$$

Or, 4.5 m from knife 2

Q.9

 $L = mr \perp v$




Q.10

Work done to change configuration from 1 & 2 can be calculated by

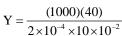
$$\mathbf{W}_{12} = -\left(\mathbf{U}_f - \mathbf{U}_i\right)$$

$$= - \left[-\frac{Gm^2}{a} \left(2 + 3 + \frac{6}{\sqrt{2}} \right) - \left(-\frac{Gm^2}{a} \left(2 + 3 + 6 \right) \right) \right]$$

$$=-\frac{Gm^2}{a}\left(6-\frac{6}{\sqrt{2}}\right)$$

Q.11 (4)

> Acceleration due to gravity on the surface of earth of



& At height 2R above earth surface

$$g' = \frac{GM}{R^2 \bigg(1 + \frac{h}{R}\bigg)^2} = \frac{GM}{R^2 \bigg(1 + \frac{2R}{R}\bigg)^2}$$

$$\Rightarrow \frac{g'}{g} = \frac{GM}{9R^2} \times \frac{R^2}{GM} = \frac{1}{9}$$

$$Y = \frac{K\ell}{Ax}$$

 $Y = 2 \times 10^9 \text{ N/m}^2 = 2 \text{ GPa}$

Q.13

$$\begin{split} mg &= \rho_{\omega} \times V_{in} \times g \\ &= 1000 \times [5 \times 4 \times 0.003] \end{split}$$

m = 60 kg

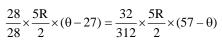
Q.14 (2)

During adiabatic process, no heat transfer takes place,

So, dQ = 0

From first law of thermodynamics,

$$dQ = dU + dW$$


$$\Rightarrow dU = -dW$$

$$\Rightarrow$$
 dU = -4.5 J

As, the temperature falls so internal energy will

decrease i.e. dU = -4.5 J

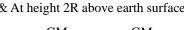
$$n_1 C_{\mathbf{V}_1} \Delta T_1 = n_2 C_{\mathbf{V}_2} \Delta T_2$$

$$2\theta = 57 + 27$$

$$\theta = \frac{84}{2} = 42^{\circ} \text{C}$$

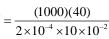
Q.16

Mass of the particle = mspring constant = k

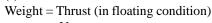

The time period of o scillator, $T = 2\pi \sqrt{\frac{m}{k}}$

As $k \propto \frac{1}{l}$ (where *l* is the length of spring)

$$g' = \frac{GM}{R^2 \left(1 + \frac{h}{R}\right)^2} = \frac{GM}{R^2 \left(1 + \frac{2R}{R}\right)^2}$$


$$g' = \frac{GM}{R^2 9}$$

$$\Rightarrow \frac{g'}{g} = \frac{GM}{9R^2} \times \frac{R^2}{GM} = \frac{1}{9}$$


$$Y = \frac{K\ell}{\Delta x}$$

$$Y = 2 \times 10^9 \text{ N/m}^2 = 2 \text{ GPa}$$

$$\therefore k' = 2k$$

$$T' = 2\pi \sqrt{\frac{m}{2k}} = \frac{1}{\sqrt{2}}T$$

Q.17 (1)

The transverse wave is given by $y = 2 \sin (30t - 40x)$

The standard transverse wave is $y = A\sin(\omega t - kx)$

On comparing, we get,

$$v = \frac{\omega}{k} = \frac{30}{40} = 0.75 \,\text{m/s}$$

$$Q \xrightarrow{\chi} \qquad \stackrel{q}{\longleftrightarrow} \qquad A - X \longrightarrow 4Q$$

$$\frac{KQ}{x^2} = \frac{K4Q}{\left(a - x\right)^2}$$

$$x = \frac{a}{3}$$

for 4Q to be in equilibrium

$$\frac{KQ}{a^2} = \frac{kq}{\left(\frac{2a}{3}\right)^2}$$

$$\Rightarrow$$
 q = $\frac{4Q}{9}$

Hence
$$q = \frac{-4Q}{9}$$

Q.20

$$\vec{F} = q\vec{E}$$

And,
$$a = \frac{F}{m}$$

Q.21

$$W = q\Delta V$$

$$\frac{4}{10} = \Delta V$$

$$\Delta V = 0.4 \text{ volt}$$

Q.22 (1)

Q.23

(1)

For figure I,

I power = I^2 (3R) For figure II,

Re sistance =
$$\frac{2R}{3}\Omega$$

II power =
$$I^2 \left(\frac{2R}{3} \right)$$

For fig ure III,

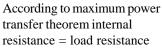
Total resistance =
$$\frac{R}{3}\Omega$$

III power =
$$I^2 \left(\frac{R}{3}\right)$$

For figure IV,

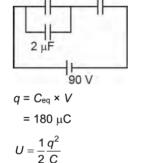
Total resistance $\frac{3}{2}\Omega$

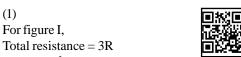
IV power =
$$I^2 \left(\frac{3}{2} R \right)$$


Hence, option (a) is correct.

Q.24 (2)

According to balanced Wheatstone bridge: $60\Omega \times 70 \text{ cm} = R \times 30 \text{ cm}$


 $R=140\Omega$



$$\therefore \frac{\left(R + \frac{3}{2}\right) \times 5}{\left(R + \frac{3}{2}\right) + 5} = 4 \Rightarrow 5R + \frac{15}{2} = 4R + \frac{13}{2} \times 4$$

2 C
=
$$\frac{1}{2} \times \frac{180 \times 180}{4} = 45 \times 90$$

= $4050 \,\mu\text{J}$

$$R = 26 - \frac{15}{2} = \frac{37}{2}\Omega$$

$$T \propto \frac{m}{q}$$

Q.27 (3)

$$B_{1} = 0, B_{2} = \frac{\mu_{0}i}{2R} \times \frac{1}{4} \otimes, B_{3} = \frac{\mu_{0}i}{2\pi R} \times \frac{1}{2} \otimes$$

$$\therefore B_{net} = \frac{\mu_0 i}{8R} + \frac{\mu_0 i}{4\pi R} = \frac{\mu_0 i}{4R} \left(\frac{1}{2} + \frac{1}{\pi}\right)$$

Q.28

$$\Rightarrow \mu = \mu_0 (1 + \chi_m)$$

Now, the magnetic flux $\phi = BA = \mu HA$ $=\mu_0(1+\chi)HA$

$$= 4\pi \times 10^{-7} (1 + 313) \times 1000 \times 0.25 \times 10^{-4}$$

$$= 9.87 \times 10^{-6} \,\mathrm{Wb}$$

Q.29

$$T=2\pi\sqrt{\frac{I}{MB_{_H}}}$$

$$T_2 = T_1 \sqrt{\frac{\left(B_H\right)_1}{\left(B_H\right)_2}}$$

 $n_1 = 30$ oscillation/min

$$n_1 = \frac{1}{2}$$
 oscillation/s

$$T_1 = 2 s$$

$$T_2 = 2\sqrt{\frac{B_H}{2B_H}} = 2 \times \frac{1}{2} = \sqrt{2} s$$

Q.30

According to figure

$$A \stackrel{\bullet}{2A} \stackrel{\bullet}{7\Omega} \stackrel{\bullet}{4V} \stackrel{\bullet}{9} \stackrel{\bullet}{mH} \stackrel{\bullet}{B}$$

Given,
$$\frac{dI}{dt} = 10^3 \text{ A/s}$$

$$L = 9 \text{ mH} = 9 \times 10^{-3} \text{ H}$$

$$V_R = 1 \cdot R = 2 \times 7 = 14 \text{ V}$$

Voltage of source, $V = 4V$

$$V_{_{L}}=L.\frac{dI}{dt}$$

$$=9 \times 10^{-3} \times 10^{3} \text{ V} = 9 \text{ V}$$

Now,
$$V_{AB} - V_{R} + V + V_{L} = 0$$

or, $V_{AB} - 14 + 4 + 9 = 0$
 $V_{AB} - 1 = 0$
or, $V_{AB} = 1V$

or,
$$V_{AB} - 14 + 4 + 9 = 0$$

$$V_{AB} - 1 = 0$$

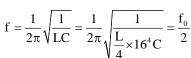
For 0 to t₁

$$E_0 = -A\sqrt{3}$$

$$E_0' = \frac{A}{\sqrt{3}} = \frac{E_0''}{3}$$

Q.31

$$\cos \phi = \frac{R}{7}$$



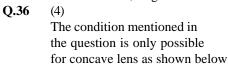
$$16R^2 - R^2 = X_c^2$$

$$R\sqrt{15} = X_c$$

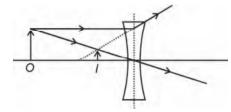
$$100\sqrt{15}\,\Omega = X_{c}$$

Q.34

Energy density due to electric field is


$$U = \frac{1}{2} \varepsilon_0 E^2$$

Here,
$$E = \frac{E_0}{\sqrt{2}} = \frac{40}{\sqrt{2}}$$


$$\therefore U = \frac{1}{2} \times 8.85 \times 10^{-12} \times \frac{40 \times 40}{2} = 3.54 \times 10^{-9} \text{J/m}^2$$

In simple microscope, image fromed is Erect, magnified and virtual.

Q.37 (2)

$$\Delta \phi_1 = \frac{2\pi}{\lambda} \times \lambda \implies \Delta \phi_1 = 2\pi$$

$$\Delta \phi_2 = \frac{2\pi}{\lambda} \times \frac{\lambda}{4} \Rightarrow \Delta \phi_2 = \pi / 2$$

$$I = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

$$\frac{I_1}{I_2} = \frac{\cos^2 \pi}{\cos^2 \frac{\pi}{4}} = \frac{1}{\lambda_2} = 2$$

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}} \Rightarrow \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{E_1}{E_2}} = \frac{60}{100}$$

$$\sqrt{\frac{E_1}{E_2}} = \frac{3}{5} \Rightarrow \frac{E_1}{E_2} = \frac{9}{25}$$

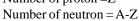
$$E_2 = \frac{25}{9}E$$

Extra energy given
$$\frac{25}{9}E - E = \frac{16E}{9}$$

 $KEmax = hf - \phi_1$

hence KE_{max} varies linearly with frequency. Also, intensity of radiation doesn't affect the KE of photoelectrons.

Q.40 (4)


$$E = \frac{-13.6}{n^2} eV$$

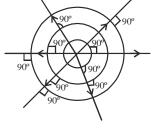
Q.41

In nucleus XA Number of proton =Z

 $\frac{E_1}{E_2} = \left(\frac{n_2}{n_1}\right)^2 = \left(\frac{4}{3}\right)^2 \Rightarrow \frac{E_1}{E_2} = \frac{16}{9}$

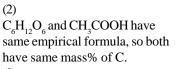
Q.42 **(2)**

Y = A + B


i.e. NOR gate

Q.43

$$\begin{split} & \sigma = e \; (n_e \mu_e + n_h \mu_n) \\ & = e n_i (\mu_e + \; \mu_n) \\ & = 1.6 \times 10^{-19} \times 5.4 \times 10^{19} \times (0.72 + 0.24) \\ & = 8.3 \; S \; m^{-1} \end{split}$$



wavefront is perpendicular to ray of light

Q.46

Q.47

Given, $\Delta x =$ uncertainty in position $\Delta v = uncertainty in velocity we$ know, $\Delta p = m\Delta v$; where Δp is the uncertainty in momentum and m is the mass of particle. Using Hersenberg's uncertainty principle,

$$\Delta x \cdot \mathbf{m} \Delta \mathbf{v} = \frac{h}{4\pi}$$

As
$$\Delta x = \Delta v$$
,

So,
$$\Delta \mathbf{v} \cdot m \Delta \mathbf{v} = \frac{h}{4\pi}$$

On multiplying both sides with m, we get

$$\mathbf{m}\Delta\mathbf{v}\cdot\mathbf{m}\Delta\mathbf{v} = \frac{mh}{4\pi}$$

Thus,
$$\Delta p^2 = \frac{mh}{4\pi} \Rightarrow \Delta p = \sqrt{\frac{mh}{4\pi}}$$

Hence,
$$\Delta p = \frac{1}{2} \sqrt{\frac{mh}{\pi}}$$

Q.48 (1)

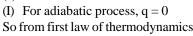
Electron affinity order →

Q.49 (3)

Q.50

$$ICl_4^+ \rightarrow sp^3d$$

$$NO_3^- \rightarrow sp^2$$



$$PCl_4^+ \rightarrow sp^3$$

$$SiF_6^{2-} \rightarrow sp^3d^2$$

Q.51

$$\Delta U = q + W$$

$$\Delta U = W$$

(II) Work is path function.

(III) Volume is an example of extensive property.

Q.52

$$\Delta_{\rm r}H = \Sigma(BE)_{\rm R} - \Sigma(BE)_{\rm p}$$

= $(430 + 200) - (2 \times 350)$
= $630 - 700 = -70 \,\text{kJ/mol}$

Q.53

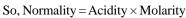
$$A(g) \rightleftharpoons 2B(g); K_c = 1.4$$

$$Q = \frac{[B]^2}{[A]} = \frac{\left(\frac{2}{2}\right)^2}{\left(\frac{3}{2}\right)} = \frac{2}{3} = 0.66$$

Since $Q < K_C$; so reaction proceed in forward direction.

Q.54

$$2X(g)+Y(g)\Longrightarrow 3Z(g)$$



$$k = \frac{\left[Z\right]^3}{\left[X\right]^2 \left[Y\right]}$$

Q.55

Lime water is Ca(OH)2. Acidity of lime water is 2.

$$\Rightarrow$$
 Molarity = $\frac{0.01}{2}$ M

Concentration of [OH-] ions,

$$[OH^-] = 2 \times \frac{0.01}{2} = 0.01 M$$

Now, $pOH = -\log [OH^{-}]$

 $pOH = -\log 10^{-2}$

 \Rightarrow pOH = 2log10 = 2

pH + pOH = 14

 \Rightarrow pH = 14 - pOH

$$= 14 - 2$$

Thus, pH = 12

Q.56

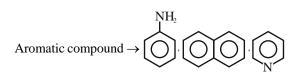
 $KMnO_{_4} + FeC_{_2}O_{_4} \xrightarrow{\quad H^+ \quad} Mn^{2+} + Fe^{3+} + CO_{_7}$ n_f of $KMnO_4 = 5$

 n_e of FeC₂O₄ = 3

no. of equivalent of KMnO₄ = no. of equivalent of

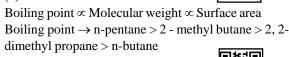
 $(\text{mol} \times \text{n}_f)_{\text{KMnO4}} = (\text{mol} \times \text{n}_f)_{\text{FeC2O4}}$ $1 \times 5 = x \times 3$

$$x = \frac{5}{3}$$

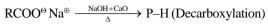


Q.57 (2)

> Alcohols are isomeric with ether. Both have same general molecular formula.


Anti aromatic compound \rightarrow

Non-aromatic compound \rightarrow



Q.59 **(4)**

Q.60 (2)

 $R-Br \xrightarrow{Na} R-R$ (Wurtz reaction)

$$R-C \equiv C-R' \xrightarrow{\text{Lindlar} \atop \text{Catalyst}} R \xrightarrow{R'} (Partial \ reduction)$$

$$CH_2 = CH_2 \xrightarrow{Br_2/CCl_4} CH_2 - CH_2 \text{ (Electrophilic addition)}$$

$$Br Br Br$$

Q.61 (4)

$$P_{\scriptscriptstyle T} = P_{\scriptscriptstyle A}^{\scriptscriptstyle o} X_{\scriptscriptstyle A} + P_{\scriptscriptstyle B}^{\scriptscriptstyle o} X_{\scriptscriptstyle B}$$

$$P_{T} = 200 \times 0.7 + 400 \times 0.3$$

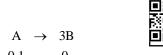
$$P_{T} = 260$$

mole fraction of B in vapour phase $(Y_B) = \frac{P_B^u X_B}{P_a}$

$$Y_{_B} = \frac{400 \times 0.3}{260}$$

$$Y_B = 0.4615 \sim 0.462$$

Q.62


$$w_g = \frac{GAM \times i \times t}{v.f. \times F}$$

$$v.f. = \frac{GAM \times i \times t}{w_g \times F}$$

v.f. =
$$\frac{63.5 \times 5 \times 193}{0.32 \times 96500} = \frac{612775}{30880} = 1.98 \sim 2$$

v.f. = 2

Q.63 (3)

$$t = 0$$
 0.1 0
 $t = 20$ 0.1-x 3x

for zero order reaction,

rate = k

$$\frac{-\Delta(A)}{\Delta t} = \frac{-(0.05 - 0.1)}{15} = 0.0033$$

 $k = 3.3 \times 10^{-3} \, mol \, L^{-1} \, sec^{-1}$

$$A_t = A_0 - kt$$

$$0.1 - x = 0.1 - 3.3 \times 10^{-3} \times 20$$

x = 0.066

conc. of product after 20 sec. = 3x

$$= 3 \times 0.066 = 1.98 \times 10^{-1} \, m$$

Q.64

$$K = \frac{1}{t_2 - t_1} \ln \frac{\left[R\right]_1}{\left[R\right]_2}$$

$$K = \frac{1}{\left(20 - 10\right) \times 60} ln \frac{0.06}{0.02} = 1.83 \times 10^{-3} sec^{-1}$$

Q.65

When we move top to bottom in a group acidic character of hydrides decreases.

$$H_2Te > H_2Se > H_2S > H_2O$$

Q.66 (2)

 $\overline{Cl}_2 \rightarrow Greenish Yellow$

 $Br_2 \rightarrow Red$

$$I_2 \rightarrow Violet$$

Q.67 **(4)**

Sc & Zn shows +3 and +2 oxidation state only.

Q.68

Complex which contains same kind of ligands is known as homoleptic complex.

Q.69

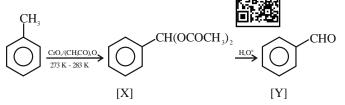
Magnetic moment =
$$\sqrt{n(n+2)}$$
 = 5.92

Complex is high spin complex means it has weak field ligand.

Electronic configuration is $\rightarrow t_{2g}^3 e_g^2$

Q.70

$$\begin{array}{c}
\text{OT} & \text{Br} & \text{Na/DE} \\
\hline
& \text{CH.Br} & \text{OT}
\end{array}$$


Q.72

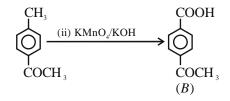
$$CH_3CH_2OH \xrightarrow{PBr_3} CH_3CH_2Br$$

$$\xrightarrow{\text{Alc.KOH}} \text{CH}_{2} = \text{CH}_{2} \text{CH}_{3} \text{CH}_{2} - \text{OH} \leftarrow \xrightarrow{\text{H}_{2}\text{SO}_{4}, \text{RT}} \xrightarrow{\text{H}_{2}\text{O, Heat}}$$

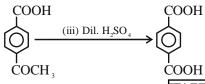
Q.73 (3)

Q.74 (4)

> Friedel-Crafts acylation of toluene gives *p*-acylated product.



$$\begin{array}{c}
CH_3 & CH_3 \\
\hline
(i) CH_3-C-CI, \\
\hline
Anhyd. AlCl_3
\end{array}$$


$$\begin{array}{c}
CH_3 \\
\hline
COCH_3
\end{array}$$

$$\begin{array}{c}
COCH_3
\end{array}$$

Product A in presence of KMnO₄/KOH gives benzoic acid derivative. Here, methyl group is oxidised to — COOH group.

Product B in presence of H₂SO₄ get hydrolysed to form —COOH group at para-position as well.

Q.75 (4)

Q.76

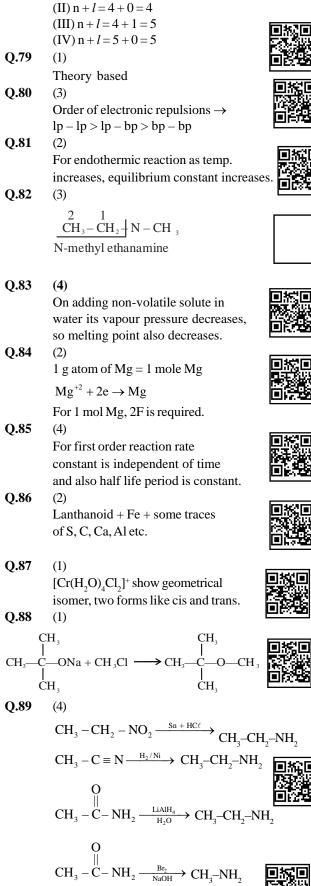
Q.77

In case nitrogen and sulphur both are present in an organic compound, sodium thiocyanate is formed, it give blood red colour and no prussian blue since there are no free cyanide Ions

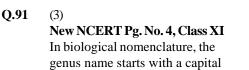
 $Na + C + N + S \rightarrow NaSCN$

$$Fe^{+3} + SCN^{\Theta} \rightarrow [Fe(SCN)]^{2+}$$

Blood red



(3)


Average atomic mass =
$$\frac{10 \times 54 + 85 \times 56 + 5 \times 57}{100}$$
$$= 55.85$$

Q.78 (2)energy \propto (n + l)(I) n + l = 3 + 2 = 5

letter, while the species name starts with a small letter. Both names are either italicized or underlined separately when handwritten. The second word denotes the species, not the family.

Q.92

New NCERT Pg. No. 17, Class XI

Claviceps and Ustilago are fungi suitable for studying the dikaryon stage. The dikaryotic phase is a stage in the fungal life cycle where cells have two genetically distinct nuclei.

Q.93 (1) Old NCERT Pg. No. 87, Class XI

> Xylem fibers have highly thickened walls and obliterated central lumen not peripheral, contributing to their mechanical strength. The radial conduction of water is facilitated by ray parenchymatous cells, which transport water and nutrients laterally within the xylem.

Q.94 (4) New NCERT Pg. No. 73, Class XII

> Phenylketonuria (PKU) is actually an autosomal recessive disorder, not dominant. It is caused by a mutation in the gene coding for the enzyme phenylalanine hydroxylase.

Q.95 (1) New NCERT Pg. No. 217, Class XII

Biodiversity can be categorized into three levels: genetic diversity (variation of genes within species), species diversity (variety of species within a habitat), and ecological diversity (variety of ecosystems in a region).

Q.96 (2) New NCERT Pg. No. 157, Class XII

Baculoviruses are used as biological control agents against insects and arthropods, and they belong to the genus Nucleopolyhedrovirus. Trichoderma species are free-living fungi in root ecosystems and

act as biocontrol agents against plant pathogens. Q.97 (1)

New NCERT Pg. No. 76, Class XII

Down's syndrome (B): Short-statured with a small round head, furrowed tongue, and partially open

Turner's syndrome (C): Ovaries are rudimentary. Klinefelter's syndrome (A): Gynaecomastia.

Q.98 New NCERT Pg. No. 170, Class XII

Agrobacterium tumefaciens infects dicot plants and transforms normal plant cells into tumor cells. Retroviruses in animals can transform normal cells into cancerous cells by integrating their DNA into the host genome.

Q.99 (1)

New NCERT Pg. No. 63

In mustard gynoecium occupies the highest position and other floral parts are situated below the gynoecium. Ovary is superior.

Q.100 (4)

New NCERT Pg. No. 60, Class XI

- The leaf is attached to the stem by the leaf base (a) is
- Pedicel helps hold the leaf blade to light and allow it to flutter in wind (b) is incorrect; this is the function of
- Veins provide rigidity to the leaf blade and act as channels of transport for water, minerals, and food materials (c) is correct.
- The lamina is a lateral small leaf-like structure which may be present at the leaf base (d) is incorrect; lamina is the leaf blade.
- In palmately compound leaves, the leaflets are attached at a common point as in silk cotton (e) is correct.

Q.101 (3)

New NCERT Pg. No. 61, Class XII

AB blood group shows co-dominance where both IA and IB alleles are expressed. The ABO blood groups are controlled by the gene I, with three alleles (IA, IB, i). The IA and IB alleles produce different sugars than the i allele. There are six possible genotypes (IAIA, IAi, IBIB, IBi, IAIB, ii).

Q.102 (4)

New NCERT Pg. No. 109, Class XI

Enzyme: Trypsin (ii) Hormone: Insulin (iii)

Fight infectious agents: Antibody (iv)

Intercellular ground substance: Collagen (i)

Q.103 (1)

New NCERT Pg. No. 196, Class XII

Interspecific interactions arise from the interaction of populations of two different species. Commensalism is a type of interaction where one species benefits, and the other is neither harmed nor benefited.

Q.104

New NCERT Pg. No. 98, Class XI

The cytoskeleton provides mechanical support, helps in cell motility, and maintains the shape of the cell. It

does not provide a barrier to undesirable macromolecules.

Q.105 (1)

New NCERT Pg. No. 29, Class XI

Bryophytes play a significant role in ecological succession and soil formation. The zygote in bryophytes does not undergo reduction division. Their sporophyte is less differentiated than in ferns, and mosses help decompose rocks making the substrate suitable for higher plants.

Q.106 (1)

New NCERT Pg. No. 92, Class XII

The promoter and terminator flank the sturctural gene in a transcription unit. The promoter is said to be located towerds 5' -end (upstream) of the structural gene (the reference is made with respect to the polarity of conding

The terminator is located towards 3'-end (downstream) of the coding strand and it usually defines the end of the process of transcription.

Q.107

New NCERT Pg. No. 223, Class XII

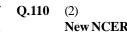
More than 25% of the drugs currently sold in the market worldwide are derived from plants, and around 25,000 species contribute to traditional medicine. However, the Amazon forest does not produce 50% of the total oxygen in the Earth's atmosphere; it contributes significantly but not to that extent

Q.108

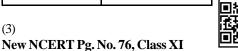
New NCERT Pg. No. 104, Class XII

About 1.4 million locations have been identified in the human genome where single base differences occur.

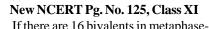
Q.109


New NCERT Pg. No. 169, 170, Class XI

In arithmetic growth, following mitotic cell division, one daughter cell continues to divide while the other differentiates. The simplest expression of arithmetic growth is seen in root elongation at a constant rate. In the log phase of geometric growth, both progeny cells retain the ability to divide.


New NCERT Pg. No. 109, Class XI

The chemical composition of living tissues in terms of percentage of total cellular mass is H₂O > Proteins > Nucleic acids > Carbohydrates > Lipids > Ions.



Component	% of the total
	cellular mass
Water	70-90
Proteins	10-15
Carbohydrates	3
Lipids	2
Nucleic acids	5-7
Ions	1

The ground tissue in monocot stems is not differentiated into cortex, pericycle, pith, etc. This feature is characteristic of dicot stems.

If there are 16 bivalents in metaphase-1, each daughter cell after Meiosis-I will have 16 chromosomes. After Meiosis-II, the number of chromosomes will remain 16 in each daughter cell.

Q.113 (3) New NCERT Pg. No. 1, 144, 146, Class XI

> Carboxylation (I): Most crucial step of C₂ cycle (B) Reduction (II): Use of photochemically made ATP and NADPH for reduction per molecule of CO₂ fixed (D) Calvin cycle (III): Primary CO₂ acceptor is a 5-carbon molecule (C)

> C₄ pathway (IV): Primary CO₂ acceptor is a 3-carbon molecule (A)

Q.114 (1) New NCERT Pg. No. 223, Class XII

Passenger Pigeons became extinct due to overexploitation by humans for food and sport.

回然回 Q.115

> New NCERT Pg. No. 74, Class XI The layers of a monocot root from outside to inside are: Epidermis, Cortex, Endodermis, Pericycle, Vascular Bundle, Pith.

Q.116 (2) New NCERT Pg. No. 176, 177, Class XI

Auxin (A) - Forms weed-free lawns (iv) Cytokinin (B) - Found in coconut milk (iii) Ethylene (C) - Apical hook formation (ii) Abscisic acid (D) - Stress hormone (i) Gibberellin (E) - Delays senescence (v)

Q.117

Q.111

Q.112 (3)

New NCERT Pg. No. 184, 185, Class XII

Transgenic mice are developed for testing vaccine safety before human use. Traditional knowledge related to bio-resources can be exploited to develop modern applications. There are risks associated with recombinant DNA technology, which is why the GEAC was established.

Q.118

New NCERT Pg. No. 221, 222, Class XII

Alexander von Humboldt described the species-area relationship. The Rivet Popper hypothesis was proposed by Paul Ehrlich. Prickly pear cactus is not an extinct species. The Evil Quartet includes factors like habitat loss, overexploitation, alien species invasion, and co-extinction, not coexistence.

Q.119

New NCERT Pg. No. 69, Class XII

Henking discovered the X body in insects. In many insects, the mechanism of sex determination is of the XO type.

Q.120

New NCERT Pg. No. 165, 168, Class XII

Plasmids are extrachromosomal DNA molecules that replicate independently inside the bacterial cell. They cannot replicate outside the bacterial cell.

Q.121(3)

New NCERT Pg. No. 180, Class XII

RNA interference (RNAi) is a strategy to produce pestresistant plants and takes place in prokaryotic organisms only as a method of cellular defense. It involves silencing specific mRNA, not dsDNA.

Q.122(1)

New NCERT Pg. No. 27, Class XI

Pear-shaped gametes are found in Brown algae e.g. Ectocarpus, Fucus.

Q.123

New NCERT Pg. No. 207, Class XII

Primary productivity varies in different ecosystems depending on plant species, environmental factors, and nutrient availability.

Q.124

New NCERT Pg. No. 157, Class XI

In fermentation, the reducing agent NADH+H⁺ is oxidized to NAD+, not reoxidized to NADH+H+.

Q.125

New NCERT Pg. No. 115, Class XI

The correct sequence for the catalytic action of an enzyme is:

A. Substrate fits into the active site of enzyme.

D. The substrate binding induces the enzyme to alter its shape and fits more tightly with the substrate.

B. The active site of the enzyme breaks the chemical bonds of the substrate.

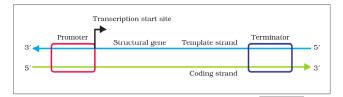
C. The enzyme is released from the enzyme-product complex.

Q.126 (3)

New NCERT Pg. No. 176, Class XI

Spraying sugarcane with gibberellins increases yield by promoting internodal elongation, resulting in taller plants with more sugar content.

Q.127


New NCERT Pg. No. 59, Class XI

The region of elongation is a few millimeters above the root cap. The root cap protects the tender apex of the root, the region of meristematic activity has thinwalled cells with dense protoplasm, and the region of maturation has some epidermal cells forming root hairs.

Q.128(3)

New NCERT Pg. No. 92, Class XII

In the schematic structure of a transcription unit, the promoter region is labeled B, and the coding strand is labeled D.

Q.129

New NCERT Pg. No. 105, Class XII

VNTRs (Variable Number of Tandem Repeats) are usually much smaller, ranging from a few to hundreds of base pairs, not 100 to 250kb.

Q.130

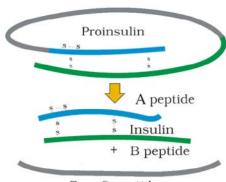
New NCERT Pg. No. 144, Class XI

The Calvin cycle requires 18 ATP and 12 NADPH molecules to make one molecule of glucose.

Q.131

New NCERT Pg. No. 14, 15, Class XII

Q.132 (1)


New NCERT Pg. No. 61, Class XI

- China rose shows alternate phyllotaxy.
- Calotropis shows opposite phyllotaxy.
- Alstonia shows whorled phyllotaxy.

Q.133

New NCERT Pg. No. 182, Class XII

Free C peptide

Q.134

New NCERT Pg. No. 224, Class XII

The ethical argument for conserving biodiversity is based on the intrinsic value of every species, recognizing their right to exist regardless of their utility to humans.

Q.135

New NCERT Pg. No. 156, Class XI

Q.136

New NCERT Pg. No. 34, Class XII

After ovulation, remnants of ruptured follicle forms graafian follicle which

changes into corpus luteum. Corpus luteum acts as a temporary endocrine gland and releases mainly progesterone and estrogen, inhibin and relaxin hormones.

Q.137

New NCERT Pg. No. 183, Class XI

Earthworm - Moist cuticle Aquatic arthropoda/mollusca – Gills Insects – Tracheal tubes Birds/mammals – Lungs

Q.138 (3)

New NCERT Pg. No. 221, Class XI

A is troponin which is present at regular intervals on tropomyosin.

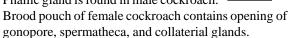
B is tropomyosin which suns along entire length of actin and masks the myosin binding site on actin. C is F-actin which is polymer of globular protein, G-

actin.

Q.139 (4)

New NCERT Pg. No. 121, Class XI

During the S (Synthesis) phase, DNA replication occurs, but the newly formed DNA molecules are not yet distinct and remain intertwined. The G₂ (Gap 2) phase follows the S phase, where the cell continues to grow and prepares for mitosis, but the DNA molecules are still not distinct.



Q.140 (3)

New NCERT Pg. No. 114, Class XI

Phallic gland is found in male cockroach.

Q.141 (3)

New NCERT Pg. No. 116, Class XII

Due to the deposition of soot and carbon particles on bark of trees, the bark gets darked after industrialisation. As a result, the melanised moths get easily camouflaged in dark back ground, leading to increase in their number.

Q.142 (3)

New NCERT Pg. No. 44, Class XII

Multi load 375 is a copper-releasing IUD

Q.143 (1)

New NCERT Pg. No. 179, Class XII

Lepidopterans - Tobacco budworm and army worm Cleopterans – Beetles

Dipterans – Flies and mosquitoes

Q.144

New NCERT Pg. No. 241, 245, Class XI

Grave's disease is also known as exopthalmic goitre which is due to hyperthryoidism.

Q.145

New NCERT Pg. No. 232, 233, Class XI

When a neuron is not conducting any impulse i.e., in resting state, it is more permeable to K⁺ and is nearly impermeable to Na⁺ β negatively charged proteins.

Q.146

New NCERT Pg. No. 94, Class XI

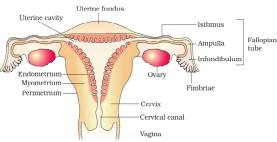
The fluidity of the cell membrane is primarily due to the lateral movement of proteins within the lipid bilayer. This lateral movement allows for various functions such as cell signaling, transport, and interaction with other cells.

Q.147

New NCERT Pg. No. 37, 38, 39, 43, Class XI

In sponges, cellular level of organisation is present. Digestive system of platyhelminthes is incomplete. Platyhelminthes have mesoderm so they are triploblastic organisms.

Q.148


New NCERT Pg. No. 102, Class XII

The human genome contains approximately 3×10^9 base pairs and about 20,500 genes. Chromosome 1 has the maximum number of genes, while the Y-

chromosome has the fewest. Dystrophin is indeed the largest known human gene.

Q.149 (2)

New NCERT Pg. No. 29, Class XII

O.150

New NCERT Pg. No. 37, Class XII

Trophoblast Outer layer of blastocyst attached to endometrium

Cleavage Mitotic division of zygote It differentiate as embryo Inner cell mass **Implantation** Embedding of blastocyst in

endometrium

Q.151

New NCERT Pg. No. 133, Class XII

forelimbs of vertebrates -Brains of vertebrates Thorns of bougainvillea and tendries of cucurbita-

Homologous organs show divergent evolution

Sweet potato and potato wings of butterfly and birds Eye of octopus and mammals Flippers of penguins and dolphin-

Analogous organs show convergent evolution

0.152(3)

New NCERT Pg. No. 133, Class XII

Ringworm is a fungal disease and is mainly caused due to the genera: Epidermophyton, Trichophyton and Microsporum.

Q.153 (3)

New NCERT Pg. No. 138, 139, 140, 141, Class XII

Cancer cells have lost the property of contact inhibition by virtue of which normal cells restricts the growth of surrounding neighbouring cells.

0.154 (4)

New NCERT Pg. No. 72, Class XII

In human pedigree analysis, a square represents a male, a circle represents a female, and a filled symbol indicates an affected individual. The symbol representing a parent with three affected offspring is a specific notation and not commonly used in standard pedigree charts.

Q.155 (4)

New NCERT Pg. No. 134, 135, Class XII

T-lymphocyte – Rejection of transplanted organ Macrphages – Cellular barrier of innate immunity Anti-tetanus injection – passive immunity

Tonsils – secondary lymphoid organs

Q.156 (1)

New NCERT Pg. No. 201, Class XI

In ECG, P-wave represents the electrical depolarisation

T-wave represents the return of ventricles from excited to normal state. 回然间

Q.157

New NCERT Pg. No. 122, 123, Class XI

- Metaphase: Chromosomes arranged at equatorial
- Interphase: The phase between two successive Mphases (iv)
- Telophase: Nuclear envelope assembles around chromosome clusters (ii)
- Prophase: Initiation of condensation of chromosomal material (i)

Q.158(3)

New NCERT Pg. No. 50, Class XI

Corvus - Crow

Columba – Pigeon

Psittacula – Parrot

Struthio - Ostrich

Neophron - Vulture

Q.159

New NCERT Pg. No. 241, Class XI

Somatostatin inhibits the release of growth hormone from pituitary gland.

Q.160

New NCERT Pg. No. 170, Class XII

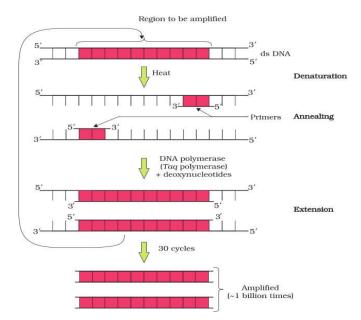
Ti plasmids of Agrobacterium tumifaciens is modified into cloning vector which is now no more pathogenic to plants.

Q.161 (4)

New NCERT Pg. No. 111, Class XI

The primitive conditions present on earth was high temperature, volcanic eruptions, reducing atmosphere containing methane, ammonia, hydrogen, water vapour.

Q.162 (3)


Old NCERT Page No. 113

The hindgut is broader than midgut and is differentiated into ileum, colon and rectum. The rectum opens out through anus.

Q.163

New NCERT Pg. No. 171, Class XII

Q.164

New NCERT Pg. No. 48, Class XII

In gamete intra fallopian transfer, ova is transferred to the fallopian tube for in-vivo fertilisation.

Q.165

New NCERT Pg. No. 171, Class XII

In micro-injection, DNA is directly injected into the nucleus of animal cells.

Q.166

New NCERT Pg. No. 206, Class XI

Protonephridia – Flatworms Nephridia – Earthworm Malphigian tubules – Cockrach Green glands – Prawn

Q.167

New NCERT Pg. No. 135, Class XII

Interferons are cytokine barriers that prevent noninfected cells from viral infection.

0.168

New NCERT Pg. No. 97, Class XI

The cristae are folding of the inner membrane of mitochondria that increase the surface area for ATP production. The assertion that cristae decrease the surface area is incorrect, while the reason explaining cristae as folding is correct.

Q.169 (2)

New NCERT Pg. No. 117, Class XII

Darwin finches refers to the small birds present on Galapagos islands. Starting from a single species from mainland in South America.

Q.170 (2)

New NCERT Pg. No. 101, 02, Class XII

Pseudo copulation by male bees with orchids is an example of mutualism where both species benefit. Lichen is a symbiotic association between fungi and algae (not roots of higher plants), and mycorrhizae is an association between fungi and roots of higher plants.

Q.171 (2)

New NCERT Pg. No. 105, Class XI

In elemental analysis or ash analysis, the ash is remained after burring the living tissue.

Q.172 (2)

New NCERT Pg. No. 199, Class XI

The number of action potential that could be generated in a minute is different at different parts of nodal system.

Q.173 (2)

New NCERT Pg. No. 100, Class XII

The accessibility of promoter regions of prokaryotic DNA by RNA polymerase is regulated by interactions with sequences called operators. These sequences are involved in the control of gene expression.

Q.174 (3)

New NCERT Pg. No. 35, Class XII

During pregnancy, all events of menstrual cycle stops and there is no menstruation.

Q.175 (3

New NCERT Pg. No. 47, Class XI

In chondrichthyes, fertilisation is usually internal and most of than are viviparous.

Q.176 (3

New NCERT Pg. No. 231, Class XI

The afferent nerve fibres transmit impulses from tissues/organs to the CNS.

Efferent nerve fibres transmit regulatory impulses from CNS to the peripheral tissues.

Q.177 (4

Old NCERT Pg. No. 104, Class XI

Figure A represents the matrix fo cartilage while figure B represents the matrix of Bone.

Q.178 (2

Old NCERT Pg. No. 114, Class XI

Malpighian tubules help in removal of excretory wastes from haemolymph.

Q.179 (3)

New NCERT Pg. No. 61, 69, 70, Class XII

In Drosophila, females are homogametic (XX) and males are heterogametic (XY). The statement incorrectly states that female Drosophila are heterogametic.

Q.180 (4

New NCERT Pg. No. 248, Class XI

Cortisol is a gluco-corticoid and is steroid-derivative hormone.

