ANSWER KEY NEET (FINAL TRACK) PART TEST-05 (XI)

PHYSICS

CHEMISTRY										
Q.41 (4)	$\mathbf{Q.42}(4)$	Q.43 (4)	Q.44 (1)	Q.45 (1)	Q.46 (3)	Q.47 (1)	Q.48 (4)	Q.49 (1)	Q.50(3)	
Q.31 (4)	Q.32 (3)	Q.33 (1)	Q.34 (1)	Q.35 (2)	Q.36 (4)	Q.37 (3)	Q.38 (3)	Q.39 (1)	Q.40 (1)	
Q.21 (1)	Q.22 (4)	Q.23 (4)	Q.24 (2)	$\mathbf{Q.25}(1)$	Q.26 (1)	Q.27 (2)	Q.28 (1)	Q.29 (2)	Q.30 (1)	
Q.11 (4)	Q.12 (4)	Q.13 (2)	Q.14 (4)	Q.15 (1)	Q.16 (2)	Q.17(4)	Q.18 (2)	Q.19 (3)	Q.20 (3)	
Q.1 (4)	Q.2 (2)	Q.3(3)	Q.4 (4)	Q.5(4)	Q.6(3)	Q.7 (2)	Q.8(3)	$\mathbf{Q.9}(3)$	Q.10(2)	

Q.51(3)	Q.52 (3)	Q.53 (3)	Q.54 (3)	Q.55(2)	Q.56 (3)	Q.57(4)	Q.58 (2)	Q.59 (2)	Q.60(4)
Q.61(3)	Q.62 (2)	Q.63 (2)	Q.64 (1)	Q.65(2)	Q.66(2)	$\mathbf{Q.67}(2)$	Q.68(4)	Q.69 (2)	Q.70 (1)
Q.71 (1)	Q.72(4)	$\mathbf{Q.73}(1)$	Q.74 (3)	Q.75(4)	$\mathbf{Q.76}(3)$	$\mathbf{Q.77}(3)$	$\mathbf{Q.78}(4)$	Q.79 (2)	Q.80(4)
Q.81 (3)	Q.82(2)	Q.83(2)	Q.84(4)	Q.85(3)	Q.86(4)	Q.87(4)	Q.88(4)	Q.89 (3)	Q.90(4)
0.91(1)	0.92(3)	0.93(3)	0.94(2)	0.95(3)	O.96 (4)	0.97 (1)	0.98 (4)	0.99(2)	O.100 (1)

BIOLOGY

Q.101 (3)	Q.102(4)	Q.103 (1)	Q.104 (2)	Q.105 (3)	Q.106(2)	$\mathbf{Q.107}(3)$	$\mathbf{Q.108}(3)$	Q.109 (1)	Q.110 (1)
Q.111 (2)	Q.112 (4)	Q.113 (2)	Q.114 (3)	Q.115 (2)	Q.116 (4)	Q.117 (3)	Q.118 (2)	Q.119(2)	Q.120 (1)
Q.121(2)	Q.122 (3)	Q.123(2)	Q.124(4)	Q.125 (1)	Q.126 (1)	Q.127 (1)	Q.128 (1)	Q.129(3)	Q.130(4)
Q.131 (4)	Q.132 (2)	Q.133 (2)	Q.134 (4)	Q.135(2)	Q.136(2)	Q.137 (1)	Q.138 (2)	Q.139 (3)	Q.140 (4)
Q.141 (3)	Q.142 (1)	Q.143 (1)	Q.144 (3)	Q.145(2)	Q.146 (4)	Q.147 (3)	Q.148 (1)	Q.149(3)	Q.150(4)
Q.151 (1)	Q.152 (1)	Q.153 (1)	Q.154(3)	Q.155(3)	Q.156(2)	Q.157(2)	Q.158 (1)	Q.159(2)	Q.160 (1)
Q.161 (2)	Q.162 (3)	Q.163 (1)	Q.164 (1)	Q.165(4)	Q.166 (2)	Q.167 (2)	Q.168 (2)	Q.169 (3)	Q.170(4)
Q.171(3)	Q.172(4)	Q.173 (3)	Q174 (1)	Q.175(4)	Q.176(4)	Q.177 (2)	Q.178 (1)	Q.179(3)	Q.180(3)
Q.181 (3)	Q.182 (1)	Q.183 (4)	Q.184 (1)	Q.185(3)	Q.186(2)	Q.187 (3)	Q.188 (4)	Q.189 (4)	Q.190(4)
Q.191(2)	Q.192(2)	Q.193 (1)	Q.194 (3)	Q.195 (1)	Q.196 (4)	Q.197 (4)	Q.198 (3)	Q.199 (3)	Q.200(4)

SOLUTIONS

IVSICS

Q.1 (4)

$$x = A/3$$

$$K.E = \frac{1}{2}K\left(A^2 - \left(\frac{A}{3}\right)^2\right)$$
$$= \frac{1}{2}K\left(\frac{8A^2}{9}\right)$$

$$P.E = \frac{1}{2}K(A/3)^2 = \frac{1}{2}K(A^2)$$

$$\frac{P.E}{K.E} = \frac{\frac{1}{2}K(A^{2}/9)}{\frac{1}{2}K(\frac{8A^{2}}{9})} = \frac{1}{8}$$

Q.2 (2)

$$a = -4\pi^{2}x$$

$$a = -\omega^{2}x$$
by comparing

$$\omega^{2} = 4\pi^{2}$$

$$\omega = 2\pi$$

$$T = \frac{2\pi}{\omega}$$

$$T = \frac{2\pi}{2\pi} = 1$$

$$T = 2\pi \sqrt{\frac{m}{K}}$$

$$n = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$

$$n' = \frac{1}{2\pi} \sqrt{\frac{K}{4m}} = \frac{1}{2} \left[\frac{1}{2n} \sqrt{\frac{K}{m}} \right]$$

$$\mathbf{n'} = \frac{\mathbf{n}}{2}$$

Q.4 (4)

Frequency of kinetic energy of oscillation is double that of the frequency of SHM. $f' = 2 \times 80 = 160 \text{ Hz}$

$$x=(1)\sin\left(\frac{2\pi}{8}t\right)$$

$$x = \sin\left(\frac{\pi}{4}t\right)$$

$$v = \frac{dx}{dt} = \frac{\pi}{4} \cos \pi/4 t$$

$$a = \frac{dv}{dt} = -\left(\frac{\pi}{4}\right)^2 \sin \pi/4t$$

at
$$t = 4/3$$

$$a = -\left(\frac{\pi}{4}\right)^{2} \sin\left(\frac{\pi}{4} \times \frac{4}{3}\right) = -\frac{\pi^{2}}{16} \times \frac{\sqrt{3}}{2} = \frac{-\sqrt{3}\pi^{2}}{32}$$

(3)
$$K_{eq} = K + 2K = 3K$$

$$T = 2\pi \sqrt{\frac{m}{3K}}$$

$$f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{3K}{m}}$$

$$\omega = 100$$

$$A = 6cm$$

$$\mathbf{v}_{\text{max}} = \mathbf{A}\boldsymbol{\alpha}$$

$$v_{\text{max}} = A\omega$$

$$= 6 \times 100 = 600 \text{ cm/s}$$

$$K.E_{max} = \frac{1}{2} mv^2$$

$$= \frac{1}{2} \times 1 \times \left(\frac{600}{100}\right)^2 = \frac{36}{2} = 18 \,\mathrm{J}$$

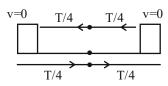
Q.8

$$T = \, 2\pi \sqrt{\frac{\ell}{g_{\rm efff}}}$$

$$T = 2\pi \sqrt{\frac{\ell}{g - \frac{qE}{m}}}$$

mg = kx

$$k = \frac{mg}{x} = \frac{0.6 \times 10}{0.4}$$

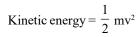

$$k = 30/2 \text{ N/m}$$

$$= 15 \text{ N/m}$$

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$= 2\pi \sqrt{\frac{0.255}{30/2}} = 2\pi \sqrt{\frac{0.255}{15}} = 0.82 \text{ s}$$

Q.10

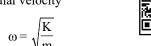

$$T/2 = 0.5$$

$$\frac{2\pi}{2\omega} = 0.5$$

$$\omega = \frac{\pi}{0.5}$$

$$=2\pi \text{ rad/s}$$

Q.11


Maximum speed = $v = A\omega$

$$K.E_{max} = \frac{1}{2} m (A\omega)^2$$

=
$$\frac{1}{2}$$
 m ω^2 A² = $\frac{1}{2} \times 2 \times (2)^2 \times (2)^2$
= 16 J

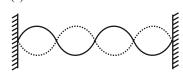
Q.12 (4)

Initial angular velocity

so,
$$v = A\omega$$

so, $v_{\mbox{\tiny max}} = A \omega$ When another block is placed on it then

$$\omega' = \sqrt{\frac{K}{2m}} = \frac{\omega}{\sqrt{2}}$$


$$\mathbf{v}'_{\text{max}} = \mathbf{A}' \mathbf{\omega}' = \mathbf{A}' \frac{\mathbf{\omega}}{\sqrt{2}}$$

$$p_i = p_i$$

$$mA\omega = (2m)A'\frac{\omega}{\sqrt{2}}$$

$$A' = \frac{A}{\sqrt{2}}$$

Q.13 (2)

$$2\lambda = L$$

$$\lambda = \frac{L}{2} = \frac{4}{2} = 2m$$

$$y = f \lambda$$

$$=180\times2$$

$$= 360 \, \text{m/s}$$

$$f = \frac{v}{2\ell} = \frac{360}{2 \times 4} = 45 \text{ Hz}$$

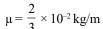
$$\Delta \phi = 60 = \frac{\pi}{3}$$

$$\frac{2\pi}{\lambda}\Delta x = \frac{\pi}{3}$$

$$\Delta x = \frac{\lambda}{6}$$

$$V = f\lambda$$

$$\lambda = \frac{v}{f} = \frac{300}{600} = \frac{1}{2}$$


$$\Delta x = \frac{\lambda}{6} = \frac{\frac{1}{2}}{6} = \frac{1}{12} m$$

$$\Delta x = \frac{100}{12} \text{ cm}$$

$$= 8.33 \, cm$$

Q.15

$$\mu = \frac{m}{\ell} = \frac{5 \times 10^{-3}}{0.75} = \frac{500}{75} \times 10^{-3}$$

$$v = \sqrt{\frac{T}{\mu}} \qquad = \sqrt{\frac{60}{\frac{2}{3} \times 10^{-2}}}$$

$$=\sqrt{90\times10^2}=30\sqrt{10} \text{ m/s}$$

Q.16

$$v = \frac{\text{Coefficient of 't'}}{\text{Coefficient of 'x'}}$$

Q.17

$$f\!=\frac{1}{2\ell}\sqrt{\frac{T}{\mu}}\,=\!n$$

$$\mu = \frac{m}{\ell} = \frac{\rho \pi r^2 \ell}{\ell}$$

$$\mu = \rho \pi r$$

$$f = \frac{1}{2\ell} \sqrt{\frac{T}{\rho \pi r^2}}$$

$$f \propto \frac{\sqrt{T}}{r\ell}$$

$$\frac{f_1}{f_2} = \frac{r_2 \ell_2}{r_1 \ell_1} \times \frac{\sqrt{T_1}}{\sqrt{T_2}} = \frac{n}{n'}$$

$$n' = n \ \frac{r_1}{r_2} \frac{\ell_1}{\ell_2} \times \frac{\sqrt{T_2}}{\sqrt{T_1}}$$

$$\mathbf{n'} = \mathbf{n} \times \frac{\mathbf{r}}{3\mathbf{r}} \times \frac{\ell}{3\ell} \sqrt{\frac{3T}{T}} \Rightarrow \mathbf{n'} = \frac{\mathbf{n}}{3\sqrt{3}}$$

Q.18

$$K = \frac{4\pi}{15} = \frac{2\pi}{\lambda}$$

$$\frac{1}{3} = \frac{2}{15}$$

wave in
$$60 \text{cm} = \frac{2}{15} \times 60 = 8$$

No. of loops =
$$8 \times 2 = 16$$

Q.19

$$v_{\omega} = \frac{A\omega}{2}$$

$$\frac{\omega}{k} = \frac{A\omega}{2}$$
 $\left(K = \frac{2\pi}{\lambda}\right)$

$$\frac{\lambda}{2\pi} = \frac{A}{2}$$

$$\lambda = \pi A$$

Q.20 (3)

$$K = \frac{\pi}{3}$$

$$\frac{2\pi}{\lambda} = \frac{\pi}{3}$$

$$\lambda = \epsilon$$

Separation between two adjacent nodes =
$$\frac{\lambda}{2}$$

$$=\frac{6}{2}=3$$
 cm

Q.21

Sign of coefficient of x and t is same so, the wave is travelling in –ve x-direction.

$$V = \frac{\text{Cooefficient of t}}{\text{Coefficient of x}}$$

$$= \frac{15\pi}{10\pi}$$
$$= 1.5 \text{ m/s}$$

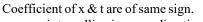
8 loops:
$$4\lambda_1 = L$$

$$\lambda_1 = L$$

$$4 loops: 2\lambda_2 = L$$

$$\lambda_2 = L/2$$

$$\frac{\lambda_1}{\lambda_2} = \frac{1}{2}$$
 $\left(V = f\lambda = \sqrt{\frac{T}{\mu}} \right)$

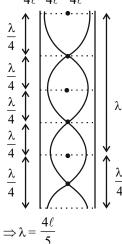

$$\lambda \propto \sqrt{T}$$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_1}{T_2}} \Rightarrow T_2 = \left(\frac{\lambda_2}{\lambda_1}\right)^2 \times T_1$$

$$=(2)^2 \times 49 = 196 \text{ N}$$

Q.23

$$v = \frac{3}{1} = 3 \text{ m/s}$$



:. wave is trevelling in –ve x-direction.

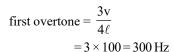
$$\ell = \frac{5\lambda}{4}$$

Nodes =
$$3$$

Antinodes = 4

Q.25

In 2 seconds beats
$$= 4$$


$$\Delta f = 2$$

$$\Delta t = \frac{1}{\Delta f}$$

$$=\frac{1}{2}$$
 sec

Q.26

$$\frac{V}{4\ell} = 100 \,\text{Hz}$$

$$v = \sqrt{\frac{\rho RT}{M}}$$

In summer temperature is high so speed will be more.

Q.28

$$v = 2f(\ell_2 - \ell_1)$$

= 2 × 300 (55 – 17) × 10⁻²

$$= 6 \times 38 = 228 \text{ m/s}$$

$$P_1 \rightarrow f_1 = \frac{3v}{4\ell}$$

$$P_2 \rightarrow f_2 = \frac{3v}{2\ell}$$

$$f_1 = f_2$$

$$\frac{3v}{4\ell} = \frac{3v}{2\ell}$$

$$\frac{\ell_1}{\ell_2} = \frac{1}{2}$$

Q.30

$$\frac{330}{4 \times 264} = L$$

$$I = 31.25 cm$$

In 1 second beats = $\frac{4}{2}$ = 2 beat/sec

$$\Delta t = \frac{1}{\Delta f}$$

$$=\frac{1}{2}$$
 sec

$$\frac{v}{4\ell} = 100 \,\mathrm{Hz}$$

$$P_1 \to f_1 = \frac{3v}{4\ell_1}$$

$$f_1 = f_2$$

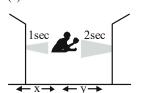
$$\frac{3\mathbf{v}}{4\ell_1} = \frac{3\mathbf{v}}{2\ell_1}$$

$$\frac{\ell_1}{\ell_2} = \frac{1}{2}$$

$$\frac{v}{4L} = 264$$

$$\frac{330}{4\times264} = L$$

$$L=31.25$$
cm


Beats formation is caused by interferece.

Q.32 (3)

Using the phenomenon of echo velocity of sound and depth of ocean can be determined.

Q.33 (1)

$$1 = \frac{2x}{V}$$

$$2 = \frac{2x}{V}$$

$$1+2 = \frac{2x+2y}{V} \Rightarrow x+y = \frac{3V}{2}$$

Q.34

Speed of sound in dry air is 340 m/s, while it is 346 m/s in moist

 $air \; \rho_{\text{dry air}} > \rho_{\text{moist air}}$

$$I = \frac{P}{A}$$

$$I = \frac{400\pi}{4\pi(20)^2}$$

$$I = 1/4 \text{ w/m}^2$$

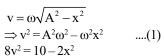
Loudness = $10 \log \frac{1}{I_0}$

$$=10\log_{10}\frac{\frac{1}{4}}{10^{-12}}$$

$$= 10 \log_{10} \frac{10^{12}}{4}$$

 $= 120 \, dB - 10 \log_{10} 4 dB$

 $= 120 \, dB - 20 \log_{10} 2dB$


 $=(120-20\times0.3)\,\mathrm{dB}$

=(120-6) dB = 114 dB

SECTION-B

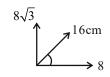
...(2)

Q.36 (4)

$$v^2 = \frac{10}{8} - \frac{1}{4}x^2$$

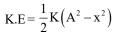
Comparing both equations

$$\omega^2 = \frac{1}{4}$$


$$\omega = \frac{1}{2}$$
 $\Rightarrow T = \frac{2\pi}{\omega}$

Q.37

$$y = 8\sin 5\pi t + 8\sqrt{3} \cos 5\pi t$$


$$A_{net} = \sqrt{8^2 + \left(8\sqrt{3}\right)^2}$$

$$=8\times2=16$$
 cm

$$\omega = 5\pi$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{5\pi} = 0.4$$

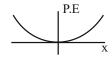
Q.38

Total energy = $\frac{1}{2}K(A^2-x^2)+\frac{1}{2}Kx^2$

$$= \frac{1}{2}KA^2$$

= constant

Q.39 (1)



$$\sqrt{2 \times 10^{-2}}$$
$$= 10 \text{ rad/s}$$

Q.40 (1)

Potential energy(P.E) = $\frac{1}{2}$ Kx²

Q.41

At mean position

$$P.E = 3J$$

$$K.E = (4J) \times 2 = 8J$$

Total energy =
$$3 + 8$$

Q.42

$$v = \omega \sqrt{A^2 - x^2}$$

so, as the distance from mean position increases, velocity decrease and it is maximum at mean position.

and it is may
$$v_{max} = A\omega$$

 $a = -\omega^2 x$

$$a = -\omega^2 x$$

 $|\mathbf{a}| = \omega^2 \mathbf{x}$

at mean position x = 0

$$\therefore a = 0$$

Q.43 (4)

Time taken to reach from mean to half of amplitude

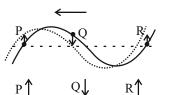
$$t = \frac{\theta}{W} = \frac{\pi}{6 \times 2\pi} T = \frac{T}{12}$$

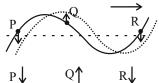
$$t = \frac{4}{12} = \frac{1}{3} \sec$$
.

$$I_{\text{axis}} = I_{\text{com}} + mx^2$$

$$=\frac{mR^2}{2}+m\bigg(\frac{R}{2}\bigg)^2$$

$$= \frac{mR^2}{2} + \frac{mR^2}{4} = \frac{3mR^2}{4}$$


$$T = \, 2\pi \sqrt{\frac{I_{axis}}{mg\,x}}$$


$$=\,2\pi\sqrt{\frac{3mR^{\,2}\times2}{4mg\times R}}$$

$$= 2\pi \sqrt{\frac{3R}{2g}}$$

Q.45

Left to right traveling of wave

In 60 sec. waves = 54

In 1 sec wave =
$$\frac{54}{60} = \frac{9}{10}$$

$$v = f \lambda$$

$$= 0.9 \times 10 = 9 \text{ m/s}$$

$$\frac{V}{2L} = 500$$

$$V = (500) \times 2L$$

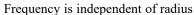
$$= 1000 L$$
 $= 1000 \times 0.2 = 200 \text{ m/s}$

$$f = \frac{v}{\lambda}$$

$$v \propto \sqrt{T}$$

$$\frac{\mathbf{v}_1}{\lambda_1} = \frac{\mathbf{v}_2}{\lambda_2}$$

$$\frac{\sqrt{T_1}}{\lambda_1} = \frac{\sqrt{T_2}}{\lambda_2}$$

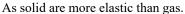

$$\frac{\sqrt{300}}{100} = \frac{\sqrt{400}}{\lambda_2}$$

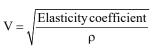
$$\lambda_2 = \frac{20 \times 100}{10\sqrt{3}}$$

$$=\frac{200}{\sqrt{3}}=115 \text{ cm}$$

Q.49

$$f = \frac{V}{2I}$$




$$\frac{f}{f'} = \frac{2L}{L}$$

$$f' = \frac{f}{2}$$

Q.50

Speed of sound is higher for more elastic median.

CHEMISTRY SECTION-A

Q.51

Pb in +4 State behave as oxidising agent.

Pb+2 Stable

Sn⁺² reducing agent

Tl⁺³ Oxidising agent

Bi+3, Sn+4 Stable

Melting point order of group 13 elements

B>Al>Tl>In>Ga

Q.53

Fullerene is purest allotrope

of carbon.

Q.54 (3)

AlCl₃>AlCl TICI>TICI,

 $SnCl_{4} > SnCl_{5}$

BiCl, >BiCl,

Q.55 (2)

> $SiCl_4 \xrightarrow{H_3O^{\oplus}} Si(OH)_4$ Silicic acid

Q.56

Melting point order \rightarrow

C > Si > Ge > Sn > Pb

Q.57 (4)

Group - 13 elements show +1

and +3 oxidation state.

Q.58

Boron trioxide reacts with metallic

oxides forming metal borates.

Q.59

Ga has more ionisation

enthalpy than Al.

Q.60 (4)

Facts

Q.61

General electronic configuration of p-block element is ns² np¹⁻⁶.

Q.62

Inert pair effect commonly observed in p-block.

Q.63 (2)

> Atomic no. Z = 104[Rutherfordium]

Q.64 (1)

> On moving down the group electronegativity decreases.

Q.65

Z = 106 = UnnilHexium (Unh).

Q.66 (2)

 $Fe \rightarrow Transition element$

 $Cl \rightarrow Non-metal$

 $Ge \rightarrow Metalloid$

 $U \rightarrow Actinoid$

Q.67 (2)

 $(n-1)s^2 p^6 ns^1$

Belongs to Alkali metals.

O.68

Nitrogen has positive e- gain enthalpy due to stable half filled (p³) configuration.

Noble gases have stable full filled configuration so it

has positive e gain enthalpy.

0.69 (2)

Lanthanides \rightarrow atomic

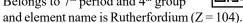
no. 58 to 71

Q.70 (1)

 $B_2O_3 \rightarrow Acidic$

 $NO \rightarrow Neutral$

 $CrO \rightarrow Basic$


 $ZnO, Al_2O_3, PbO, PbO_2, SnO, SnO_2, Cr_2O_3 \rightarrow Amphoteric$

oxide

Q.71 (1)

 $[Rn] 5f^{14} 6d^2 7s^2$

Belongs to 7th period and 4th group

O.72 (4)

Atomic radii order

Q.73 (1)

> Alkaline earth metals generally shows biggest jump between 2nd and 3rd I.E.

Q.74

Ionic radii →

 $F^- < O^{-2} < S^{-2} < Br^-$

Q.75 Atomic no. $104 \rightarrow \text{belongs}$ to d-block elements.

Q.76 (3) Atomic size → C>N>O>F

Q.77 (3) EA Cl = -349 kJ/molI = -295S = -200

Q.78 (4) Facts

Q.79 [Ne] 3s² 3p³ have highest I.E. due to stable half filled (p³) configuration.

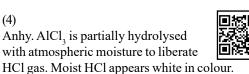
Q.80(4) Z = 112 belongs to period number 7.

0.81 (3) Bond strength \rightarrow HF>HCl>HBr>HI

Q.82 He (noble gas) has higher I.P and Cs (Alkali metal) has lowest I.P in periodic table.

Q.83 M Show +2 oxidation state so formula is MCl₂.

Q.84 Z = 59 placed in f-block in Lanthanide series.



Q.85 (3) Non-metalic character → F>N>C>B>Si

SECTION-B

0.86 (4) Melting points and boiling points of group-14 elements are much higher than those of corresponding elements of group-13 elements.

Q.89 (3) Boron does not form MF_6^{3-} ion because it can not expand its valency more than 4.

Q.90 (4) Facts

0.91 (1) Negative e- gain enthalpy order of group-16 elements-S > Se > Te > Po > O

Q.92 Be shows diagonal relationship with aluminium (Al).

Q.93 (3) $Na_2O \rightarrow Basic$ SO₂ → Acidic $AS_2O_3 \rightarrow Amphoteric$ $N_2O \rightarrow Neutral$

Q.94 (2) Atomic radii $Na^- > Na > Na^+$

0.95 Electronegativity order → O>N>C>Si

Q.96 (4) Conceptual

Q.97 (1) Atomic radius Ne (1.34)Å

(0.90)Å,

Q.98 (4) Facts

Q.99 (2) Electron gain enthalpy and ionisation enthalpy contains units of energy but electronegativity and metallic

character are unit less. Q.100 (1)

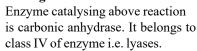
(4)

Q.87

BIOLOGY-I SECTION-A

Q.101 (3)

New NCERT Pg. No. 190


Receptors associated with aortic arch and carotid artery also can recognize

changes in CO, and H⁺ concentration and send necessary signals to the rhythm centre for remedial actions.

Q.102 (4)

New NCERT Pg. No. 190

The reaction progresses in forward/right direction when the levels of carbon dioxide is high.

The reaction progresses in reverse direction in alveoli for CO₂ to be exhaled out.

Q.103 (1)

New NCERT Pg. No. 185-186

The contraction of external inter-costal muscles lifts up

the ribs and the sternum causing an increase in the volume of the thoracic chamber in the dorso-ventral axis.

O.104 (2)

New NCERT Pg. No. 189

In the tissues, where low pO₂, high pCO₂, high H⁺ concentration and higher temperature exist, the conditions are favourable for dissociation of oxygen from the

The part starting with the external

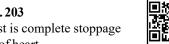
Q.105 (3)

New NCERT Pg. No. 185

oxyhaemoglobin.

nostrils up to the terminal bronchioles constitute the conducting part whereas the alveoli and their ducts form the respiratory or exchange part of the respiratory system.

Q.106 (2)


New NCERT Pg. No. 194

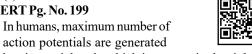
Thrombocytes –1.5-3,5lac/mm³ of blood Erythrocytes –5-5.5 million/mm³ of blood $Leucocytes-6000-8000/mm^3 \ of \ blood$ Haemoglobin – 12-16 g/100 ml of blood

Q.107 (3)

New NCERT Pg. No. 203

Cardia arrest is complete stoppage of working of heart.

Q.108 (3)


New NCERT Pg. No. 201

To obtain a standard ECG, a patient is connected to the machine with three electrical leads (one to each wrist and to the left ankle) that continuosly monitor the heart activity.

O.109 (1)

New NCERT Pg. No. 199

by sino-atrial node which is present in the right upper corner of the right atrium of heart.

O.110 (1)

New NCERT Pg. No. 197

Closed circulatory system is considered as more advantageous than open circulatory system as the flow of fluid can be more precisely regulated.

Q.111 (2)

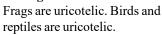
New NCERT Pg. No. 201

Pulmonary circuit

Right ventricle —	Pulmonary artery	\rightarrow	lungs -	Pulmonary vein	\rightarrow	left atrium
Systemic circuit						

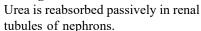
Vena → right atrium Left ventricle _____ body tissues -

Q.112 (4)


New NCERT Pg. No. 213

Presence of glucose and ketone bodies in urine are indicative of diabetes mellitus. Diabetes insipidus occurs due to hyposecretion of ADH.

Q.113 (2)


New NCERT Pg. No. 205

Q.114 (3)


New NCERT Pg. No. 209

Q.115 (2)

New NCERT Pg. No. 209

The ascending limb is impermeable to water but allows transport of electrolytes actively or passively.

Q.116 (4)

New NCERT Pg. No. 206

Kidneys are located between the levels of last thoracic and third lumbar vertebra.

O.117 (3)

New NCERT Pg. No. 209

JGA is a special sensitive region formed by cellular modifications in the distal convulated tubule and the afferent arteriole at the location of their contact.

O.118 (2)

New NCERT Pg. No. 222

Muscle contraction is initiated by a signal sent by the central nervous system via a motor neuron.

回然间

Q.119 (2)

New NCERT Pg. No. 221

The globular head of the meromyosin has active sites for actin and binding sites for ATP.

Q.120 (1)

New NCERT Pg. No. 227

Saddle joint is present between carpal and metacarpal of human thumb.

0.121(2)

New NCERT Pg. No. 224

Bones have a very hard matrix due to calcium salts in it and cartilage has slightly pliable matrix due to chondroitin salts.

Q.122 (3)

New NCERT Pg. No. 226

Acromian process is a part of scapula and is found in pectoral girdle.

Glenoid cavity is a depression to which head of humerus articulates.

Sternum is a flat bone on the ventral midline of the thorax.

Q.123 (2)

New NCERT Pg. No. 224

Axial skeleton consists of so bones while appendicular skeleton consists of 126 bones.

Q.124 (4)

New NCERT Pg. No. 232

Dendrites transmit impulses towards the cell body. Axon carries impulses away from cell body.

Q.125 (1)

New NCERT Pg. No. 236

The inner parts of cerebral hemispheres and a group of

associated deep structures like amygdala, hippocampus, etc., form a complex structure called the limbic lobe or limbic system. Hypothalamus contains a number of centres which control body temperature, urge for eating and drinking.

The cerebrum wraps around a structure called thalamus, which is a major coordinating centre for sensory and motor signaling. The dorsal portion of the midbrain consists mainly of four round swellings (lobes) called corpora quadrigemina.

Q.126 (1)

New NCERT Pg. No. 236

The cerebral cortex is called gray matter because of its grayish appearance due to concentration of neuronal cell bodies.

$\mathbf{O.127}$ (1)

New NCERT Pg. No. 234

Neurotransmitters binds to receptors present on post-synaptic neuron.

O.128 (1)

New NCERT Pg. No. 232

When a stimulus is applied at a site on polarised axonal membrane, the

membrane at site becomes freely permeable to Na+ because of opening of Na⁺ gated channels and influx of Na⁺ from extracellular fluid into axoplasm takes place.

Q.129 (3)

New NCERT Pg. No. 248

mRNA does not act as second messenger.

Q.130 (4)

New NCERT Pg. No. 242

Pineal gland has no role in secretion of pepsinogen which is a digestive enzyme.

Q.131 (4)

New NCERT Pg. No. 240, 243, 245

Insulin – Glucagon Calcitonin - Parathormone

Aldosterone – Atrial natriuretic factor GnRH – Somatostatin

Q.132 (2)

New NCERT Pg. No. 243

PTH is a peptide hormone. Which increases blood calcium level.

Q.133 (2)

New NCERT Pg. No. 239

The endocrine system provides chemical integration through hormones.

Point-to-point connection is provided by neural system.

Q.134 (4)

New NCERT Pg. No. 247

GnRH is a hypothalamic hormone.

O.135 (2)

New NCERT Pg. No. 243

Grave's disease or exopthalmic goitre is a form of hyperthyroidism.

SECTION-B

Q.136 (2)

New NCERT Pg. No. 183

Special vascularised structures called gills are used by most of the aquatic

arthropods and molluscs. Respiration through gills is called branchial respiration.

Q.137 (1)

New NCERT Pg. No. 189

Haemoglobin is the red-coloured pigment that carries maximum four,

4 molecules of O₂.1 haemoglobin combines with 4 molecules of O₂.

Q.138 (2)

New NCERT Pg. No. 196

During clotting of blood, Inactive fibrinogens are converted into fibrin in the plasma by the enzyme thrombin.

Q.139 (3)

New NCERT Pg. No. 199, 200

All the four chambers of heart remain in a relaxed state during complete cardiac diastole or joint diastole.

Q.140 (4)

New NCERT Pg. No. 206, 207

Inside the kidney, there are two zones, an outer cortex and an inner medulla.

The medulla is divided into a few conical masses (medullary pyramids) projecting into the calyces.

Q.141 (3)

New NCERT Pg. No. 207

Glomerulus alongwith Bowman's capsule is called the renal corpuscle or malphigian body.

Q.142 (1)

New NCERT Pg. No. 211

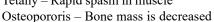
In ascending limb, reabsorption of electrolytes takes place.

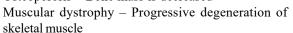
counter current mechanism produces osmolarity gradient 300 mOsmol/\ell to 1200 mOsmol/\ell from outercortex to inner medulla.

Reabsorption of water takes place in collecting duct.

Q.143 (1)

New NCERT Pg. No. 226


Each half of pectoral girdle consists of 1 clavicle and 1 scapula.



Q.144 (3)

New NCERT Pg. No. 227

Tetany – Rapid spasm in muscle

Arthritis – Inflammation of joints

Myasthenia gravis – Autoimmune disorder

Q.145 (2)

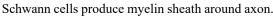
New NCERT Pg. No. 222

During shortening of muscle, A-band retains length, whereas, I-band gets reduced.

Isotropic band of a myofibril consists of actin filament.

O.146 (4)

New NCERT Pg. No. 231


The somatic neural system relays impulses from the CNS to skeletal muscles.

Q.147 (3)

New NCERT Pg. No. 232

Myelinated nerve fibres are enveloped by schwann cells.

O.148 (1)

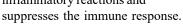
New NCERT Pg. No. 236

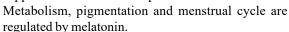
Inner parts of cerebral hemisphere is myelinated and is called white matter.

The cerebrum wraps around a structure called thalamus.

Q.149 (3)

New NCERT Pg. No. 248


Adrenaline and glucagon bind with membrane bound receptors.



Q.150 (4)

New NCERT Pg. No. 245

Glucocorticoids produce antiinflammatory reactions and

Growth of mammary glands and formation of milk is function of prolactin.

> **BIOLOGY-II SECTION-A**

Q.151 (1)

New NCERT Pg. No. 190

Another centre present in the pons region of the brain called pneumotaxic centre can

moderate the functions of the respiratory rhythm centre.

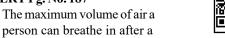
Q.152 (1)

New NCERT Pg. No. 187, 188

Primary site for exchange of gases in humans is alveoli which is lined by simple squamous epithelial cells.

Q.153 (1)

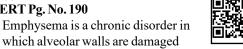
New NCERT Pg. No. 190


Role of oxygen is quite insignificant in regulating respiratory rhythm centre.

Receptors that modify the working of RRC gets activated by rise in pCO, and H⁺ concentration. Every 100 ml of deoxygenated blood delivers 4 ml of CO, to alveoli.

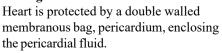
Q.154 (3)

New NCERT Pg. No. 187



forced expiration. This includes ERV, TV and IRV or the maximum volume of air a person can breathe out after a forced inspiration.

0.155 (3)


New NCERT Pg. No. 190

due to which respiratory surface is decreased. One of the major causes of this is cigarette smoking.

0.156 (2)

New NCERT Pg. No. 198

O.157 (2)

New NCERT Pg. No. 197

Lymph is a colourless fluid containing specialised lymphocytes. It lacks haemoglobin and RBCs.

Q.158 (1)

New NCERT Pg. No. 198

The opening between the right atrium and the right ventricle is guarded by a

valve formed of three muscular flaps or cusps, the tricuspid valve.

Q.159 (2)

New NCERT Pg. No. 198-199

Semilunar valves prevent backward flow of blood into ventricles from arteries.

Q.160 (1)

New NCERT Pg. No. 195

Donor's plasma = anti-B only antibodies \therefore Blood group of donor = A

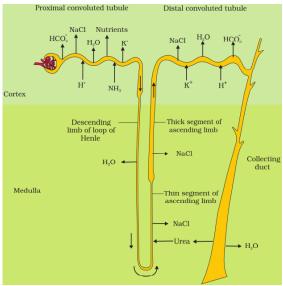
Surface antigen present on RBC in donor = A

:. A person with blood group A can give blood group only to a person having blood group A and AB.

Q.161 (2)

New NCERT Pg. No. 197

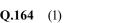
Amphibians have three chambered heart; with two atria and one ventricle.



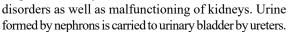
Q.162 (3)

New NCERT Pg. No. 210

H⁺ and NH, are generally secreted in PCT of nephron.



Q.163 (1)


New NCERT Pg. No. 208

A minute vessel of peritubular capillaries network runs parallel to the Henle's loop forming a 'U' shaped vasa recta.

New NCERT Pg. No. 213

Analysis of urine helps in clinical diagnosis of many metabolic

Q.165 (4)

New NCERT Pg. No. 206

Flame cells \rightarrow Rotifers Nephridia → Earthworms Malpighian tubules → Insects Antennal glands \rightarrow Prawns

Q.166 (2)

New NCERT Pg. No. 213

Glomerulonephritis is due to the inflammation of glomeruli of kidney.

Q.167 (2)

New NCERT Pg. No. 212

ANF causes vasodilation and decreases blood pressure. ADH is a potent vasoconstrictor.

Q.168 (2)

New NCERT Pg. No. 227

Cartilaginous joints allow limited movement. Adjacent vertebrae in the vertebral column are cartilaginous joints. Flat skull bones have immovable fibrous joints. Joints between atlas – axis and between carpals – metacarpals are of freely movable synovial type.

New NCERT Pg. No. 218

About 40-50% of the body weight of a human adult is contributed by muscles.

回統回

Q.170 (4)

New NCERT Pg. No. 219

Each organised skeletal muscle is made of a number of muscle bundles or fascicles held together by fascia.

Muscle fibre contains a large number of parallely arranged myofibrils. Myofibrils contains sarcomere. Each sarcomere contains 1 A-band and 2 half I-bands.

Q.171 (3)

New NCERT Pg. No. 219

Cardiac muscles are faintly striated and are involuntary in action.

Q.172 (4)

New NCERT Pg. No. 221

During resting state of skeletal muscle fibre, a subunit of troponin masks the active binding sites on actin.

Q.173 (3)

New NCERT Pg. No. 222

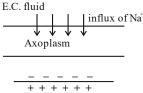
Cross bridge is broken due to attachment of ATP to ATP binding site present on myonin head.

Q174 (1)

New NCERT Pg. No. 236

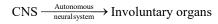
Cerebral hemispheres → Cerebrum divided into two halves

Corpus callosum \rightarrow Connect two hemispheres Association areas \rightarrow Intersensory association Hypothalamus \rightarrow Urge for eating and drinking


Q.175 (4)

New NCERT Pg. No. 232

When a stimulus is applied at a site on polarised axonal membrane, the



membrane at site becomes freely permeable to Na⁺ because of opening of Na⁺ gated channels and influx of Na⁺ from extracellular fluid into axoplasm takes place.

New NCERT Pg. No. 231

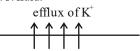
 $CNS \xrightarrow{somatic} Skeletal muscles$

Q.177 (2)

New NCERT Pg. No. 234

In a synapse, synaptic cleft may be present or it may be absent.

O.178 (1)

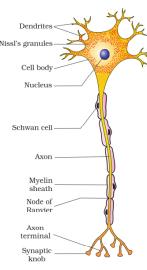

New NCERT Pg. No. 233

Depolarisation is due to influx of Natrom E.C. fluid into axoplasm.

influx of Na⁺

Repolarisation is due to efflux of K⁺ from axoplasm into E.C. fluid.

During resting state, the ionic gradient is maintained by Na⁺/K⁺ ATPase pump.



Q.179 (3)

New NCERT Pg. No. 232

D is node of Ranvier.

Q.180 (3)

New NCERT Pg. No. 245

Aldosterone – Adrenal cortex, Mineralocorticoid Cortisol – Glucocorticoid Glucagon – α -cells of Pancreas

O.181 (3)

New NCERT Pg. No. 245

Insulin is a peptide hormone released by pancreas, a composite gland and it increases cellular glucose uptake.

New NCERT Pg. No. 243

Thymosins released from thymus plays a major role in the differentiation of T-lymphocytes, which provide cellmediated immunity.

New NCERT Pg. No. 243

Protrusion of eyeballs result from hyperthyroidism in exopthalmic goitre.

Q.184 (1)

New NCERT Pg. No. 247

Heart releases ANF. Kidney releases erythropoietin GIT releases gastrin, secretin, cholecystokinin and gastric inhibitory peptide.

Q.185 (3)

New NCERT Pg. No. 244

Alertness, pupilary dilation and piloerection are due to catecholamines

released from adrenal medulla during emergency conditions.

SECTION-B

Q.186 (2)

New NCERT Pg. No. 190

A chemosensitive area is situated adjacent to the rhythm centre which

is highly sensitive to CO, and hydrogen ions. Increase in these substances can activate this centre.

Q.187 (3)

New NCERT Pg. No. 184

During swallowing, glottis is covered by a thin elastic cartil aginous flap

called epiglottis to prevent the entry of food into the larynx.

Q.188 (4)

New NCERT Pg. No. 199

Conducting pathway of heart: SA Node \rightarrow AV node \rightarrow Bundle of His \rightarrow Purkinje fibres.

Q.189 (4)

New NCERT Pg. No. 195

Mega karyoagtes are special cells in bone narrow whose fragments produces throm bocytes.

Q.190 (4)

New NCERT Pg. No. 209

Descending linb of \rightarrow Impermeable to electrolytes loop of Henle

Distal convoluted Tubule → Conditional reabsorption of Na+, H₂O

Ascending limb of → Impermeable to water loop of Henle

Proximal convielated Tubule → Reabsorption of Na⁺& nutrients

Q.191 (2)

New NCERT Pg. No. 209

The amount of filtrate formed by the kidneys per minute is called GFR. It is approximately 125me/minute.

Q.192 (2)

New NCERT Pg. No. 212

Dicresis is excessive urination. It can be prevented by readsorption of Na⁺ and water from renal tubules due to aldosterone.

Q.193 (1)

New NCERT Pg. No. 227

Saddle joint is present between carpal and metacarpal of human thumb.

Q.194 (3)

New NCERT Pg. No. 220

Actin filaments are thinner and is known as thin filament.

Myosin filaments are thicker and is known as thick filament, In the centre of each 'I' band, Z line is present.

O.195 (1)

New NCERT Pg. No. 227

Ball and socket joint is present between ofenoid cavity and head of humerus.

Q.196 (4)

New NCERT Pg. No. 224

X is Parietal Bone Y is frontal bone

Joint present between cranial bones are fibrous joints.

Q.197 (4)

New NCERT Pg. No. 236

Association areas are resposible for complex functions like intersensory associations, memory and communication.

O.198 (3)

New NCERT Pg. No. 236

Cerebral aqueduct is present in mid-brain. Mid-brain is located between thalamus (forebrain) and pons (hindbrain)

Q.199 (3)

New NCERT Pg. No. 232

The sodium-potassium pump which transports 3 Na^+ outwards for $2 K^+$ into the cell.

Q.200 (4)

New NCERT Pg. No. 244

The adrenal medulla secretes two hormones called **adrenaline** or epinephrine and noradrenaline or norepinephrine. These are commonly called as **catecholamines**.