UNIT TEST-03

Subject : Chemistry Class : XII

Q.1(2)	Q.2 (2)	Q.3 (2)	Q.4 (2)	Q.5 (3)	Q.6 (2)	Q.7 (2)	Q.8 (4)	Q.9 (3)	Q.10(4)
Q.11 (2)	Q.12 (3)	Q.13 (1)	Q.14 (1)	Q.15 (4)	Q.16 (3)	Q.17 (2)	Q.18 (3)	Q.19 (4)	Q.20 (4)
Q.21 (2)	Q.22 (3)	Q.23 (3)	Q.24 (4)	Q.25 (3)	Q.26 (2)	Q.27 (4)	Q.28 (2)	Q.29 (3)	Q.30 (2)
Q.31 (4)	Q.32 (1)	Q.33 (3)	Q.34 (1)	Q.35 (4)	Q.36 (1)	Q.37 (2)	Q.38 (4)	Q.39 (3)	Q.40 (2)
Q.41 (4)	Q.42 (3)	Q.43 (2)	Q.44 (4)	Q.45 (4)	Q.46 (4)	Q.47 (2)	Q.48 (3)	Q.49 (2)	Q.50 (2)

Q.1 (2)

Q.2 (2)
The order of boiling point is

$$OH > OH > OH$$
(II) (III)

Q.3 (2)
Tertiary alcohol readily reacts with halogen acid

$$CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3} - C^{+} + OH^{-}$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3}$$

Presence of 3 alkyl group increases electron density on $_{3^o}$ carbon atom. Hence $_{-OH}$ group is easily removed. After the removal of group carbonium ion is formed which is most stable

Q.4 (2)
Reaction with thionyl chloride (darzan method)

$$\begin{array}{c} R + O + H \\ \hline Cl + SO + Cl \end{array} \xrightarrow{pyridine} R - Cl \leftarrow SO_2 \uparrow + HCl \uparrow$$

Q.5 (3)

$$\begin{array}{c} CH_2OH \\ \hline \\ H^{\dagger}from \\ \hline \\ H_3PO_4 \end{array} \qquad \begin{array}{c} CH_2-OH_2 \\ \hline \\ -H_2O \end{array}$$

Q.6 (2)

Q.7 (2) Iodoform reaction can be used for this transformation.

Q.8 (4)

R-CH₂OH Pyridinium chlorochromate is the mild oxidising agent.

Q.9 (3)(*) Both alcohols & phenol are weak acid, the alcohols are less acidic then phenol because it is very tough to remove (H) ion from alcohol.

Q.10 (4) **Q.11** (2)

Q.12 (3)

$$\begin{array}{ccc}
OH & & OH \\
& & Br_2(excess) & Br & Br \\
& & Br_3
\end{array}$$

– OH \rightarrow electro Donating group and Ortho-Para directing

 $-SO_3H \rightarrow good leaving group$

Q.13 (1)

6 OH + FeCl₃
$$\rightarrow$$
 [Fe(OPh)₆]³⁻+ 3HCl + 3H (Violet)

Q.14 (1)

Q.15 (4)

$$CH_3: O-CH-CH_3 + HI \rightarrow CH_3I + HO-CH-CH_3$$

$$CH_3: O-CH-CH_3 + HI \rightarrow CH_3I + HO-CH-CH_3$$

$$CH_3: O-CH-CH_3 + HI \rightarrow CH_3I + HO-CH-CH_3$$

Site of cleavage in case of unsymmetrical ether, if sec. alkyl group is present then halide ion attach the smaller alkyl group so alkyl halide informed from smaller alkyl group.

Q.16 (3)

Q.17 (2)

$$O - CH_3 \xrightarrow{HI} O - H + CH_3 - I$$
Phonol Redomethan

Phenylmethyl ether

Phenol Iodomethane

Q.18 (3)

Q.19 (4)

Q.20 (4)
Only Primary Alcohol will oxidise into Aldehyde.

Q.21 (2)

Q.22 (3)

2,2-Dimethyl Propanone propanal

Q.23 (3)

$$\overbrace{\bigcirc}^{\text{CH}_3} \xrightarrow{\text{CrO}_2\text{Cl}_2} \overbrace{\bigcirc}^{\text{CHO}}$$

Q.24 (4)

Q.25 (3)

$$CH_{3}-\underbrace{C-CH_{3}}_{\Delta}\xrightarrow{NH_{2}-CH_{3}} H_{3}C-\underbrace{C-CH_{3}}_{\Delta}\xrightarrow{NH_{3}-C-C-CH_{3}} H_{3}C-\underbrace{C-CH_{3}}_{C-C-CH_{3}}\xrightarrow{NH_{3}-CH_{3}} H_{3}C-\underbrace{C-CH_{3}}_{C-C-CH_{3}}$$

$$\begin{array}{c}
N - CH_3 \\
\parallel \\
H_3C - C - CH_3
\end{array}$$

Q.26 (2)

Reduction of carbonyl compounds to alkane by Zn-Hg/HCl is called Clemmensen reduction

Q.27 (4)

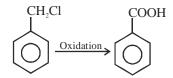
$$\begin{array}{|c|c|c|c|}\hline CHO & CHO & CHO & COCH_3\\\hline\hline \\ NO_2 & CH_3 \\\hline \\ NO_2 & CH_3 \\\hline \end{array}$$

Q.28 (2)

$$\begin{array}{c} H \\ H_{3}C - C = O + HCN \\ \end{array} \rightarrow \begin{array}{c} H \\ I \\ C - C \\ - OH \\ CN \end{array}$$

In this * C is chiral C-atom

Q.29 (3)


Carbonyl componds containing alpha hydrogen atom undergoes aldol condensation reaction.

(*) Formaldehyde (HCHO) does not contain alpha hydrogen atom. Hence it does not udergoes aldol condensation reaction.

Q.30 (2)
$$\sim$$
 CHO + NaOH \rightarrow COONa + \sim OI

This is Cannizzaro reaction.

Q.31 (4)

On oxidation side chain containg at least one α H atoms gets oxidised to –COOH group irrespective of number of carbon atoms.

Q.32 (1)

$$CH_{2} - COOH > CH_{2} - COOH$$

$$F \qquad Br$$

$$-I \rightarrow -F > -Br$$
order

Q.33 (3)

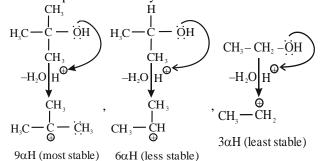
Q.34 (1)
This is Hell Volhard Zelinsky Reaction (H.V.Z) so product is ∞-Halo acids

Q.35 (4)
$$CH_{3} - C \longrightarrow OH + NH_{3} \longrightarrow CH_{3} - C \longrightarrow OH_{3} \longrightarrow CH_{3}C = NH_{3} \longrightarrow CH_{3}C \longrightarrow CH_{3}$$

Q.36 (1)

I.
$$CH_3CH=CH_2+H_2O \xrightarrow{H^+} CH_3CHCH_3$$

OH


II. $CH_3CHO \xrightarrow{(i)CH_3MgI} CH_3CHCH_3$

III. $CH_2O \xrightarrow{(i)C_2H_3MgI} C_2H_3CH_2OH$

IV. $CH_3CH=CH_2 \xrightarrow{KMnO_4} CH_3CHCH_2$
OHOH

Q.37 (2)

Correct order of dehydration of alcohol is: $-3^{\circ} > 2^{\circ} > 1^{\circ}$ \Rightarrow depends on stability of Intermediate.

Q.38 (4)

$$CH_{3} - Br \xrightarrow{KCN} CH_{3} - CN \xrightarrow{H_{3}O^{+}} CH_{3} - CN \xrightarrow{(Hydrolysis)}$$
Methyl bromide

$$\begin{array}{c} CH_{3}COOH \xrightarrow{\text{LiAlH}_{4}/\text{ether}} CH_{3}CH_{2}OH \\ \text{Aceticacid(B)} & \text{Ethyl alcohol(C)} \end{array}$$

Q.39 (3)

There is not any resonance in CH_3 –OH. Resonance is poor in p-Ethoxyphenol than phenol. so C-OH bond length order is: CH_3 –OH > p-ethoxyphenol (p-EtO- C_6H_4 -OH) > Ph–OH

Bond length decreases due to resonance

Q.40 (2)

Q.41 (4)

Bulkier the alkyl groups in the ether, greater is the C-O-C bond angle due to steric factor

Q.42 (3)

$$CH_{3}-CH_{2}+C_{2}H_{5}-ONa$$

$$\downarrow I \qquad \downarrow SN^{2}$$

CH₃-CH₂-O-CH₂CH₃+NaI

Example of Nuecleophilic subtitution reaction.

Q.43 (2)

$$CH_{3} \xrightarrow{CHOCrCl_{2}OH)_{2}} CHO$$

$$CH_{3} \xrightarrow{CrO.Cl_{3}} CHO$$

$$Chromium complex$$

$$(A)$$

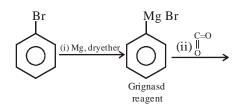
$$(B)$$

Q.44 (4)

Iodoform test is given by the compounds having either

Q.45 (4)

Aromatic aldehydes do not respond to Fehling's solution test.


Q.46 (4) Product \rightarrow C₆H₅CH₂OH

Q.47 (2)

CH₃-CH-C-H This compound can give aldol reaction CH₃

but to show Aldol condensation carbonyl group Should have at least 2α –H .

Q.48 (3)

$$\begin{array}{c}
O \\
C-O Mg Br
\end{array}$$

$$\begin{array}{c}
COOH \\
O ill HCI
\end{array}$$

Q.49 (2)

-COOH and -OH group form the hydrogen bond by which they have high boiling point. -COOH group show strong hydrogen bonding so it form dimer and have more boiling point than -OH group. While -CHO group do not form hydrogen bond. Thus the reactivity order are as 3 > 1 > 2.

Q.50 (2)

(i) MeCOOH + PCl
$$_5$$
 \rightarrow Me–C–Cl + POCl $_3$ + HCl

(iii) Me-C-O-C-Me+PCl
$$_5$$
 \rightarrow 2 Me-C-Cl+POCl $_2$

(iv) Me-C-NH₂+PCl₅
$$\xrightarrow{\text{Dehydration}}$$
 Me-C = N+H₂C