UNIT TEST-04

Subject : Chemistry Class : XI

Q.1 (1)	Q.2 (2)	Q.3 (1)	Q.4 (3)	Q.5 (2)	Q.6 (3)	Q.7 (3)	Q.8 (3)	Q.9 (1)	Q.10(2)
Q.11 (2)	Q.12(2)	Q.13 (1)	Q.14 (3)	Q.15 (2)	Q.16 (4)	Q.17 (2)	Q.18 (3)	Q.19 (4)	Q.20 (3)
Q.21 (2)	Q.22 (2)	Q.23 (2)	Q.24 (2)	Q.25 (2)	Q.26 (2)	Q.27 (1)	Q.28(2)	Q.29 (4)	Q.30 (3)
Q.31 (3)	Q.32 (4)	Q.33 (3)	Q.34 (3)	Q.35 (4)	Q.36 (3)	Q.37 (4)	Q.38 (2)	Q.39 (2)	Q.40 (4)
Q.41 (3)	Q.42 (3)	Q.43 (2)	Q.44 (1)	Q.45 (3)	Q.46 (4)	Q.47 (2)	Q.48 (4)	Q.49 (3)	Q.50 (4)

Q.1 (1) $CH_2 = CH - CH_2 - C \equiv N$ $\sigma - bond$ $\pi - bond$ 9 3Ratio 3: 1

Q.2 (2) Stability order

$$\overbrace{\bigcirc \\ NO_2}^{\overline{C}H_2} > \overbrace{\bigcirc \\ F}^{\overline{C}H_2} > \overbrace{\bigcirc \\ CH_2}^{\overline{C}H_2} > \overbrace{\bigcirc \\ CH_2}^{\overline{C}H_2}$$

presence of [-I] group will increase the stability of carbanion.

Q.3 (1)

Q.4 (3)

-Cl shows +m effect that's why it is O, P-directing

Q.5 (2)

Q.6 (3)

$$COOH$$
 $COOH$ $COOH$ OH $COOH$ CO

Q.7 (3) Ortho effect.

Q.8 (3)

Q.9 (1)

Naphthalene

$$(14\pi \text{ electrons})$$

Q.10 (2)

Q.11 (2)

Q.12 (2)

Q.13 (1)

Q.14 (3)
In the compound 3 (C = C) with different substituent so total G. Isomer = 6

Q.15 (2)

Q.16 (4)

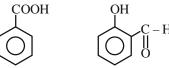
Q.17 (2) ${}^{4}_{CH_{3}} - {}^{3}_{CH} = {}^{2}_{CH} - {}^{1}_{CN}$ ${}^{8}_{p^{3}} + {}^{3}_{p^{2}} + {}^{2}_{p^{2}} + {}^{3}_{p^{2}}$

Q.18 (3)

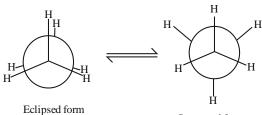
n it is not homocyclic since hetero atom is present H
within the ring.

Q.19 (4)

Q.20 (3)


Q.21 (2)

$$\begin{array}{ccc}
CH_3 - CH - CH_2 - OH & 2 - Bromopropanol \\
& Br
\end{array}$$


Q.22 (2)

- Q.23 (2)
- Q.24 (2)
- Q.25 (2) Best for symmetrical alkane.
- Q.26 (2) CHO Formed only one ozonized product that is
- Q.27 (1) Hydrogenation \rightarrow H₂/Ni De HydroHologenation \rightarrow Ale · KOH De Hydration \rightarrow Conc \cdot H₂SO₄/ Δ Hydration $\rightarrow H_3O^{\oplus}$
- Q.28 (2)
- Q.29 (4)
- Q.30 (3)
- Q.31 (3)
- Q.32 (4) Acidic strength ∞ Stability of conjugate base E.N. \rightarrow sp carbon > sp² carbon > sp³ carbon
- Q.33 (3) CH₃ Conc HNO Sn/HCl NO,

- Q.34 (3) Hint:- decolourise bromine water do not show properties of Aromatic compounds
- Q.35 Reaction is called Wurtz fittig reaction.
- Q.36 (3) $CH_2 - CH - CH_3$
 - 7, 2'H are present in the compound.
- Q.37 All are correct statement (fact Based)
- Q.38 (2) COOH

- Both are functional isomer of each other.
- Q.39 (2)
- Q.40 $CH_3 - CH_3 \Rightarrow Ethane$

Staggered form

- both are inter conver Rapidly due to free rotation so it can not be isolated at room temperature.
- Q.41 (3)
- Q.42 IUPAC name – Chlorophenyl methane
- Q.43 (2)
- 0.44 (1)
- Q.45 (3)
- (4) Q.46

Q.47 (2)

(2) Acidic strength of hydrogen

$$CH = CH > CH_2 = CH_2 > CH_3 - CH_3$$

Q.48 (4)

$$CH_{3}-C=C-CH_{2}-CH_{3}$$

$$CH_{3}-C=C$$

$$H_{2}/Pd$$

$$BaSO_{4}$$

$$(A)$$

$$Na/liq.NH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{2}$$

$$CH_{2}CH_{3}$$

$$(B)$$

Q.49 (3)

Q.50 (4)