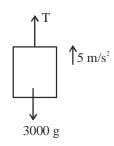

UNIT TEST-02

Subject : Physics Class : XI

Q.1 (3)	Q.2 (1)	Q.3 (3)	Q.4 (1)	Q.5 (2)	Q.6 (2)	Q.7 (3)	Q.8 (4)	Q.9 (4)	Q.10 (1)	
Q.11 (3)	Q.12(4)	Q.13 (1)	Q.14 (1)	Q.15 (3)	Q.16 (2)	Q.17 (3)	Q.18 (4)	Q.19 (1)	Q.20 (3)	
Q.21 (3)	Q.22 (3)	Q.23 (1)	Q.24 (3)	Q.25 (4)	Q.26 (3)	Q.27 (1)	Q.28(2)	Q.29 (2)	Q.30 (1)	
Q.31 (1)	Q.32 (2)	Q.33 (3)	Q.34 (2)	Q.35 (1)	Q.36 (1)	Q.37 (2)	Q.38 (2)	Q.39 (3)	Q.40 (1)	
Q.41 (1)	Q.42 (3)	Q.43 (4)	Q.44 (2)	Q.45 (1)	Q.46 (3)	Q.47 (4)	Q.48 (4)	Q.49 (3)	Q.50(2)	

- Q.1 (3) Concept of Inertia.
- Q.2 (1)
 The compartments have a spring system between them.
 Firstly, the engine comes to rest; then the compartment attached to it will come to rest.
- Q.3 (3) $F = ma = m \left[\frac{V^2 - U^2}{2s} \right]$ $F = 20 \left[\frac{(5)^2 - (20)^2}{2 \times 100} \right] = -37.5 \text{ N}$
- Q.4 (1) Here, $\frac{dm}{dt} = \frac{8}{5.6} \text{ g/sec}$ $u_{rel} = 7 \text{ cm/s}$ $F_{thrust} = u_{rel} \frac{dm}{dt}$ $= 7 \times \frac{8}{5.6} = 10 \text{ dyne} = 10 \times 10^{-5} \text{ N}$ $F = 10^{-4} \text{ N}$
- **Q.5** (2)
- Q.6 (2 T = m(g + a) = 6 (10 + 1)= 66 N

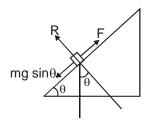

Q.7 $T = \frac{75}{100} \text{mg}$ = $\frac{3}{4} \text{mg}$

$$F_{net} = mg$$

$$mg - \frac{3}{4} mg = ma$$

$$\frac{mg}{4} = ma$$
$$a = g/4$$

Q.8 (4)



$$T - 3000 g = 3000 \times 5$$

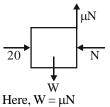
 $T = 45000 N$

Q.9 (4)
A physical beam balance measures normal reaction

which will be greater than the weight of body when elevator accelerating upwards.

Q.10 (1) $F = mg \sin\theta = 2 \times 9.8 \times \sin 45^{\circ} = 19.6 \sin 45^{\circ}$

Hence the correct choice is (1)


Q.11 (3)

$$a = \frac{(m_2 - m_1)g}{m_1 + m_2} = \frac{4g}{16} = 2.5 \text{m/s}^2$$

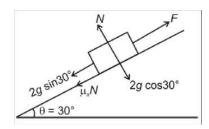
Q.12 (4)

Q.13 (1)

Q.14 (1)

 $=0.4 \times 20$ =8N

Q.15 (3)


Q.16 (2) Theory

Q.17

From FBD of body

To just move up

 $F = (2gsin30^{\circ} + \mu_s N); N = (2gcos30^{\circ})$

$$F_{min} = \left(2 \times 9.8 \times \frac{1}{2}\right) + \left(\frac{3}{10} \times 2 \times 9.8 \times \frac{\sqrt{3}}{2}\right)$$
$$= 9.8 + 5.09 = 14.89 \text{ N}$$

Q.18

$$a_{\text{common}} = \frac{100}{40 + 60} = 1 \text{ m/s}^2$$

$$\begin{split} f_{_{s,\,max}} &= \mu_{_s} N_{_{12}} = 0.2 \times 400 = 80 \; N \\ f_{_{required}} &= ma = 60 \times 1 = 60 \; N \end{split}$$

$$f_{radiated} = ma = 60 \times 1 = 60 \text{ N}$$

 $\cdot \cdot \cdot f_{required} < f_s, max \Rightarrow blocks move together and$ $f = f_{required} = 60 \text{ N}$

Q.19

Loss in PE of m_2 = gain in KE of (m_1, m_2) + loss in friction

$$\begin{split} m_{2}g(2) &= \frac{1}{2}m_{1}v^{2} + \frac{1}{2}m_{2}v^{2} + \mu m_{1}g(2) \\ 4 \times 10 \times 2 \\ &= \frac{1}{2} \times 6 \times v^{2} + \frac{1}{2} \times 4 \times v^{2} + \left(0.5 \times 6 \times 10 \times 2\right) \\ v &= 2 \text{ m/s} \end{split}$$

Q.20 $\frac{v_1^2}{r_1} = \frac{v_2^2}{r_2} \ ; \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \frac{1}{\sqrt{2}}$

Q.21

Q.22 (3)

$$W = Fd \cos \theta$$

$$25 = 5 \times 10 \cos \theta$$

$$\theta = 60^{\circ}$$

Q.23 (1) $\vec{s} = 3\hat{j} + 4\hat{k}$ $\vec{F} = -\hat{i} + 2\hat{j} + 3\hat{k}$ $\mathbf{w} = \vec{\mathbf{F}} \cdot \vec{\mathbf{S}}$ =-6+12=18J

Q.24 (3) Work done $w = \Delta KE$

(a)
$$w = \frac{1}{2}(2)(2)^2 - \frac{1}{2}(2) \cdot (4)^2 = -12 J$$

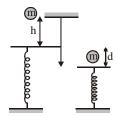
(b)
$$w = \frac{1}{2}(1)[(6)^2 - (4)^2] = 10J$$

(c)
$$w = \frac{1}{2}(2)[(3)^2 - (0)^2] = 9J$$

(d)
$$w = \frac{1}{2} \times 5[4-1] = 7.5 J$$

Q.25 $W = \frac{MgL}{2n^2}$ here n = 3 $W = \frac{MgL}{18}$

Q.26 $5 \times 10^4 \times 3 = \frac{1}{2} \times 3 \times 10^7 \times V^2$ $10 \times 10^{-3} = v^2$ V = 0.1 m/s


Q.27

Let spring compresses by x By COME

$$\frac{1}{2}mv^2 = \frac{1}{2}kx^2 + f.x$$
$$\Rightarrow x = 5.5 \text{ cm}$$

Q.28 (2)

> Situation is shown in figure. When mass m falls vertically on spring, then spring is compressed by distance d.

Hence, net work done in the process is

W = potential energy stored in the spring + loss of potential energy of mass

$$= mg \ (h + d) - \frac{1}{2}kd^2$$

0.29 (2)

Q.30

$$m \frac{dv}{dt} v = p$$

$$\int\limits_0^u \, v \,\, dv \,\, = \, \int\limits_0^t \, \frac{p}{m} \,\, dt$$

$$\frac{v^2}{2} = \frac{p}{m}t$$

$$v=\sqrt{\frac{2pt}{m}}$$

Q.31

$$P = \frac{w}{f} = \frac{(M+m)gh}{t}$$
$$= \frac{800 \times 20 \times .2}{10} = 320w$$

Q.32

$$F = -\frac{dU}{dx}$$

Between B and C

Slope =
$$\frac{dU}{dx}$$
 = + ve

So F = -ve i.e. attractive

Q.33 (3)

For water not to spill out of the bucket,

$$v_{min} = \sqrt{5gR}$$
$$= \sqrt{5 \times 10 \times 0.5}$$
$$= 5 \text{ ms}^{-1}$$

Q.34 (2)

For light rod

$$\mathbf{v}_{top} = 0$$

 $v_{top} = 0$ Using energy conservation

$$\frac{1}{2} mv^2 + 0 = 0 + mg\ell$$
$$v = \sqrt{2g\ell}$$

Q.35 (1)

> Let the velocity is v. The particle will not slide, if centripetal force is not there or the centripetal force is balanced by the weight of the particle.

So,
$$\frac{mv^2}{R} = mg$$

$$v = \sqrt{Rg} = \sqrt{20 \times 10^{-2} \times 9.8}$$
$$= \sqrt{196 \times 10^{-2}} = 1.4 \text{ms}^{-1}$$

Q.36 (1)

Q.37 (2)

Here the tension in the cord is given by

$$T = mg + ma$$

(Here: upwards acceleration = a, mass of sphere = m, T $=4 \,\mathrm{mg}$

So
$$4 mg = mg + ma$$
$$3 mg = ma$$
$$a = \frac{a}{a}$$

$$g = 3$$

$$a = 3g$$

or

Q.38 (2)

> The reading on the scale is a measure of the force on the floor by the person. by the Newton's third law this is equal and opposite to the normal force N on the person by the floor.

> ... When the lift is ascending upwards with a acceleration of 9 ms⁻², then

$$N-50 \times 10 = 50 \times 4$$
 or $N = 50 \times 10 + 50 \times 4$
= $50 (10+4) = 700 N$

:. The reading of weighing machine is 70 kg.

Q.39 (3)

$$a = \frac{F_{net}}{Total\, mass}$$

$$a = \frac{\left(5 - 2\right)g}{7} = \frac{3g}{7}$$

2 kg up and 5 kg down.

 $a \rightarrow (iii)$

 $b \rightarrow (ii)$

$$c \rightarrow (i) T = \frac{2m_1 m_2}{m_1 + m_2} g$$

$$=\frac{2\times5\times2\times g}{7}=\frac{20}{7}g$$

$$d \to (iv) T^1 = 2T = \frac{40}{7}g$$

Q.40 (1)

Q.41 (1)

Q.42

As initially, the acceleration of aeroplane is in upward direction then it decrease.

Q.43 (4)

> Net downward force = Weight - Friction \therefore ma = $25 \times 9.8 - 2$

 $\Rightarrow a = 9.72 \text{ m/s}^2$

Q.44 (2)

Q.45 (1)

$$F_{\rm C} = \frac{mv^2}{r} = \frac{mr^2\omega^2}{r} = mr\omega^2 \qquad T_{\rm max} = 10 \text{ N}$$

$$\begin{split} T_{max} &= F_{cp} \Longrightarrow 10 = mr\omega^2 \\ \Longrightarrow \omega^2 &= 400 \end{split}$$

 $\Rightarrow \omega = 20 \text{ rad/sec.}$

Q.46

Workdone =
$$\int_{0}^{1} F dy = \int_{0}^{1} 20 dy + \int_{0}^{1} \log dy$$

$$\Rightarrow$$
 workdone = $20(1-0) + \left(\frac{10y^2}{2}\right)_0^1$

$$=20+5(1-0)=25 J$$

Q.47

$$x = 3t^2 + 5$$

$$\Rightarrow$$
 v = 6t \Rightarrow Δ W = Δ k

$$= \frac{1}{2}(2)(30)^2 - \frac{1}{2}2(0)^2 = 900 \,\mathrm{J}$$

Q.48

Total work done Average power =

 $Mass = 90 tonne = 90 \times 1000 kg$

 $Height = 200 \, m$

Time taken = 1 hour = 3600 s

$$\Rightarrow <\!P_{\text{avg}}\!> = \frac{mgh}{\Delta t} = \frac{90\!\times\!1000\!\times\!9.8\!\times\!200}{3600}$$

 $=49000 \, \text{W}$

 $=49 \,\mathrm{kW}$

Q.49 (3)

$$a=0$$
 $\Rightarrow F=0, \Rightarrow \frac{dU}{dx}=0$]

Q.50 (2)