
UNIT TEST-02

Subject : Chemistry Class : XI

Q.1 (3)	Q.2 (4)	Q.3 (3)	Q.4 (4)	Q.5 (4)	Q.6 (1)	Q.7 (3)	Q.8 (2)	Q.9 (2)	Q.10 (1)
Q.11 (1)	Q.12 (2)	Q.13 (3)	Q.14 (1)	Q.15 (4)	Q.16 (4)	Q.17 (2)	Q.18 (1)	Q.19 (4)	Q.20 (4)
Q.21 (1)	Q.22 (3)	Q.23 (3)	Q.24 (1)	Q.25 (4)	Q.26 (2)	Q.27 (3)	Q.28 (3)	Q.29 (1)	Q.30 (3)
Q.31 (4)	Q.32 (2)	Q.33 (3)	Q.34 (1)	Q.35 (2)	Q.36 (4)	Q.37 (3)	Q.38 (3)	Q.39 (3)	Q.40 (3)
Q.41 (4)	Q.42 (3)	Q.43 (2)	Q.44 (3)	Q.45 (4)	Q.46 (2)	Q.47 (3)	Q.48 (3)	Q.49 (3)	Q.50 (2)

Q.2 (4)

Q.3 (3)

 NH_3 has lone pair of electron while BF_3 is electron deficient compound so they form a co-ordinate bond $NF_3 \rightarrow BF_3$

Q.4 (4)

In BCl₃ Boron forms 3 bond having 6e⁻ & in PCl₅ phosphorous forms 5 bond i.e. having 10e⁻ so both violates octet rule.

Q.5 (4)

Bond order
CO 3
CO, 2

CO₃⁻² 1.33

Q.6 (1)

Q.7 (3)

Q.8 (2)

Ionic bonding is non directional, whereas covalent bonding is directional. So, CO₂ is directional.

Q.9 (2)

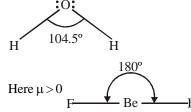
Hydration energy \propto polarising power $Na^+ < Mg^{2+} < Mg^{3+} < Be^{3+} < Al^{3+}$

Q.10 (1)

Q.11 (1)

Q.12 (2)

Q.13 (3)

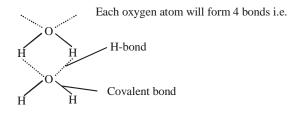

Q.14 (1)

B.O.
$$\alpha \frac{1}{B.L.}$$

 $\begin{array}{ccc} & & B.O. \\ N_2 & & 3 \\ N_2^+ & & 2.5 \\ N_2^- & & 2.5 \end{array}$

Q.15 (4)

The structure of H_2O is angular V-shape and has sp³-hybridisation and bond angle is 105° . Its dipole moment value is positive or more than zero.


But in BeF₂, structure is linear due to sp-hybridisation ($\mu = 0$). Thus, due to $\mu > 0$, H₂O is dipolar and due to $\mu = 0$, BeF₂ is non-polar.

Q.16 (4)

Q.17 (2)

Bond length decreases with an increase in bond order. Therefore, the order of bond length in these species is $O_2^+ < O_2^- > O_2 < O_2^{2-}$ (bond order $-O_2^+ = 2.5$, $O_2 = 2$, $O_2^- = 1.5$, $O_2^{2-} = 1$).

Q.18 (1)

Q.19 (4)

$$N = O$$

The molecule contains unpaired electron.

Q.20 (4)

Q.21 (1)

Q.22 (3)

- Adsorption involves bond formation therefore, always exothermic.
- Movement of particles decreases after adsorption therefore, entropy decreases.

Q.23 (3)

$$a = \Delta U - W$$
$$\Delta U = q + w$$

$$\Delta V = V_2 = V_1$$
$$\Delta V = 20 - 10$$

$$=800\,J+P_{\rm ext}+\Delta V$$

$$W = -Pext \Delta V$$

= $800\,J - 1 \times 10\,L$ atm is converted into $JK^{-1}mol^{-1}$ from the above equation

$$= 800 \text{ J} - \frac{10 \text{ Latm} \times 8.314 \text{ J}}{0.0821 \text{ Latm}}$$

$$\Delta U = -213 J$$

Q.24 (1)

From first law of thermodynamic.

 $\Delta U = q + W$ Given, q = +300 cal (: Heat is absorbed) W = -500 cal

(: Work is done on surroundings)

∴
$$\Delta U = q + W = 300 + (-500)$$

= -200 cal

Q.25 (4)

Here ideal gas expand in vacuum So work done is Zero.

Q.26 (2)

$$W = -2.303 \text{ n RT log } \frac{V_2}{V_1}$$

=
$$-2.303 \times 1 \times 0.082 \times 300 \log 2$$

= $-2.303 \times 1 \times 0.082 \times 300 \times 0.301$
= -17.1 J

Q.27 (3)

Q.28 (3)

We know that internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, than its internal energy remains same. **Q.29** (1)

Q.30 (3)

Q.31 (4)

$$\Delta G = \Delta H - T\Delta S$$

According to the above reaction if $\Delta H > 0$ and $\Delta S > 0$ then the process is spontaneous at high temperature and non spontaneous at low temperature.

Q.32 (2)

Absolute entropies of ions are relative to H⁺ (aq)

Q.33 (3)

Q.34 (1)

Q.35 (2)

Q.36 (4)

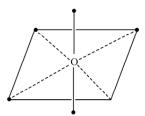
 HNO_2 does not have co-ordinate bond. Structure is H - O - N = O.

Q.37 (3

No electron as it accept lone pair of electron with the other atom

Q.38 (3)

In CaCl₂ calcium loose 2 electrons and transfer to Cl atom thus both acquire outermost 8 electron in valence shell.


Q.39 (3)

Ionic compound contain opposite charged ions.

Q.40 (3)

Q.41 (4)

 sp^3d^2 hybridisation has octahedral structure such that four hybrid orbitals are at 90° w.r.t each other and others two at 90° with first four.

Q.42 (3

Cl₂ (nonpolar - no difference in electro negativity of atom)

Q.43 (2)

Q.44 (3)

Adiabatic process may involve increase or decrease in temperature of the system.

Q.45 (4)

Q.46 (2)

HCN + NaOH
$$\rightarrow$$
 NaCN + H₂O
 Δ H = -12
HCl + NaOH \rightarrow NaCl + H₂O
 Δ H = -56
 Δ Hionis ation (HCM) = 12 - (-56)
= 44 KJ

Q.47 (3)

2 atoms of hydrogen forms bond to form H_2 molecule. \therefore Bond is formed \Rightarrow Attractive forces \Rightarrow Energy is released during the process. **Q.48** (3)

The hest of reaction for an ideal at constant pressure and constant volume are related as

$$\therefore \Delta H = \Delta U + \Delta nRT$$

$$\therefore q_p = q_v + \Delta nRT$$

Q.49 (3)

If $\Delta H = +$ ve and $\Delta S = -$ ve then the reaction is non-spontaneous

Q.50 (2)

for endothermic reaction
$$\Rightarrow \Delta H = +$$
 ve Also given, $\Delta S = +$ ve $\Delta G = \Delta H - T \Delta S$

$$(+ ve) - (+ ve)$$

for feasibility
$$\Rightarrow \Delta G < 0$$

means $TS > \Delta H \Rightarrow 0$